These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Nitrosyl adducts of FixL as probes of heme environment. Rodgers KR; Lukat-Rodgers GS; Tang L J Biol Inorg Chem; 2000 Oct; 5(5):642-54. PubMed ID: 11085655 [TBL] [Abstract][Full Text] [Related]
3. Structural basis for ligand discrimination and response initiation in the heme-based oxygen sensor FixL. Rodgers KR; Lukat-Rodgers GS; Barron JA Biochemistry; 1996 Jul; 35(29):9539-48. PubMed ID: 8755735 [TBL] [Abstract][Full Text] [Related]
4. Heme speciation in alkaline ferric FixL and possible tyrosine involvement in the signal transduction pathway for regulation of nitrogen fixation. Lukat-Rodgers GS; Rexine JL; Rodgers KR Biochemistry; 1998 Sep; 37(39):13543-52. PubMed ID: 9753440 [TBL] [Abstract][Full Text] [Related]
5. Binding of nitric oxide and carbon monoxide to soluble guanylate cyclase as observed with Resonance raman spectroscopy. Deinum G; Stone JR; Babcock GT; Marletta MA Biochemistry; 1996 Feb; 35(5):1540-7. PubMed ID: 8634285 [TBL] [Abstract][Full Text] [Related]
6. Accessibility of the distal heme face, rather than Fe-His bond strength, determines the heme-nitrosyl coordination number of cytochromes c': evidence from spectroscopic studies. Andrew CR; Kemper LJ; Busche TL; Tiwari AM; Kecskes MC; Stafford JM; Croft LC; Lu S; Moënne-Loccoz P; Huston W; Moir JW; Eady RR Biochemistry; 2005 Jun; 44(24):8664-72. PubMed ID: 15952773 [TBL] [Abstract][Full Text] [Related]
7. Sensory mechanism of oxygen sensor FixL from Rhizobium meliloti: crystallographic, mutagenesis and resonance Raman spectroscopic studies. Miyatake H; Mukai M; Park SY; Adachi S; Tamura K; Nakamura H; Nakamura K; Tsuchiya T; Iizuka T; Shiro Y J Mol Biol; 2000 Aug; 301(2):415-31. PubMed ID: 10926518 [TBL] [Abstract][Full Text] [Related]
8. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR). Miller LM; Pedraza AJ; Chance MR Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857 [TBL] [Abstract][Full Text] [Related]
10. Electronic structure of six-coordinate iron(III)-porphyrin NO adducts: the elusive iron(III)-NO(radical) state and its influence on the properties of these complexes. Praneeth VK; Paulat F; Berto TC; George SD; Näther C; Sulok CD; Lehnert N J Am Chem Soc; 2008 Nov; 130(46):15288-303. PubMed ID: 18942830 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic and computational study of a non-heme iron [Fe-NO]7 system: exploring the geometric and electronic structures of the nitrosyl adduct of iron superoxide dismutase. Jackson TA; Yikilmaz E; Miller AF; Brunold TC J Am Chem Soc; 2003 Jul; 125(27):8348-63. PubMed ID: 12837107 [TBL] [Abstract][Full Text] [Related]
12. Structural characterization of the proximal and distal histidine environment of cytoglobin and neuroglobin. Sawai H; Makino M; Mizutani Y; Ohta T; Sugimoto H; Uno T; Kawada N; Yoshizato K; Kitagawa T; Shiro Y Biochemistry; 2005 Oct; 44(40):13257-65. PubMed ID: 16201751 [TBL] [Abstract][Full Text] [Related]
13. Resonance Raman spectroscopic study of nitrophorin 1, a nitric oxide-binding heme protein from Rhodnius prolixus, and its nitrosyl and cyano adducts. Maes EM; Walker FA; Montfort WR; Czernuszewicz RS J Am Chem Soc; 2001 Nov; 123(47):11664-72. PubMed ID: 11716723 [TBL] [Abstract][Full Text] [Related]
14. Spectroscopic properties and electronic structure of five- and six-coordinate iron(II) porphyrin NO complexes: Effect of the axial N-donor ligand. Praneeth VK; Näther C; Peters G; Lehnert N Inorg Chem; 2006 Apr; 45(7):2795-811. PubMed ID: 16562937 [TBL] [Abstract][Full Text] [Related]
15. Heterologous overexpression and purification of cytochrome c' from Rhodobacter capsulatus and a mutant (K42E) in the dimerization region. Mutation does not alter oligomerization but impacts the heme iron spin state and nitric oxide binding properties. Huston WM; Andrew CR; Servid AE; McKay AL; Leech AP; Butler CS; Moir JW Biochemistry; 2006 Apr; 45(14):4388-95. PubMed ID: 16584174 [TBL] [Abstract][Full Text] [Related]
16. Six- to five-coordinate heme-nitrosyl conversion in cytochrome c' and its relevance to guanylate cyclase. Andrew CR; George SJ; Lawson DM; Eady RR Biochemistry; 2002 Feb; 41(7):2353-60. PubMed ID: 11841228 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of nitric oxide dissociation from five- and six-coordinate nitrosyl hemes and heme proteins, including soluble guanylate cyclase. Kharitonov VG; Sharma VS; Magde D; Koesling D Biochemistry; 1997 Jun; 36(22):6814-8. PubMed ID: 9184164 [TBL] [Abstract][Full Text] [Related]
18. Interaction of nitric oxide with cytochrome P450 BM3. Quaroni LG; Seward HE; McLean KJ; Girvan HM; Ost TW; Noble MA; Kelly SM; Price NC; Cheesman MR; Smith WE; Munro AW Biochemistry; 2004 Dec; 43(51):16416-31. PubMed ID: 15610036 [TBL] [Abstract][Full Text] [Related]
19. Detection and determination of the {Fe(NO)(2)} core vibrational features in dinitrosyl-iron complexes from experiment, normal coordinate analysis, and density functional theory: an avenue for probing the nitric oxide oxidation state. Dai RJ; Ke SC J Phys Chem B; 2007 Mar; 111(9):2335-46. PubMed ID: 17295535 [TBL] [Abstract][Full Text] [Related]
20. Oriented single-crystal nuclear resonance vibrational spectroscopy of [Fe(TPP)(MI)(NO)]: quantitative assessment of the trans effect of NO. Lehnert N; Sage JT; Silvernail N; Scheidt WR; Alp EE; Sturhahn W; Zhao J Inorg Chem; 2010 Aug; 49(15):7197-215. PubMed ID: 20586416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]