BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

644 related articles for article (PubMed ID: 9100014)

  • 1. alphaT244M mutation affects the redox, kinetic, and in vitro folding properties of Paracoccus denitrificans electron transfer flavoprotein.
    Griffin KJ; Dwyer TM; Manning MC; Meyer JD; Carpenter JF; Frerman FE
    Biochemistry; 1997 Apr; 36(14):4194-202. PubMed ID: 9100014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The intraflavin hydrogen bond in human electron transfer flavoprotein modulates redox potentials and may participate in electron transfer.
    Dwyer TM; Mortl S; Kemter K; Bacher A; Fauq A; Frerman FE
    Biochemistry; 1999 Jul; 38(30):9735-45. PubMed ID: 10423253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of Paracoccus denitrificans electron transfer flavoprotein: structural and electrostatic analysis of a conserved flavin binding domain.
    Roberts DL; Salazar D; Fulmer JP; Frerman FE; Kim JJ
    Biochemistry; 1999 Feb; 38(7):1977-89. PubMed ID: 10026281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The functions of the flavin contact residues, alphaArg249 and betaTyr16, in human electron transfer flavoprotein.
    Dwyer TM; Zhang L; Muller M; Marrugo F; Frerman F
    Biochim Biophys Acta; 1999 Aug; 1433(1-2):139-52. PubMed ID: 10446367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and characterization of two pathogenic mutations in human electron transfer flavoprotein.
    Salazar D; Zhang L; deGala GD; Frerman FE
    J Biol Chem; 1997 Oct; 272(42):26425-33. PubMed ID: 9334218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and characterization of human and chimeric human-Paracoccus denitrificans electron transfer flavoproteins.
    Herrick KR; Salazar D; Goodman SI; Finocchiaro G; Bedzyk LA; Frerman FE
    J Biol Chem; 1994 Dec; 269(51):32239-45. PubMed ID: 7798224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and redox relationships between Paracoccus denitrificans, porcine and human electron-transferring flavoproteins.
    Watmough NJ; Kiss J; Frerman FE
    Eur J Biochem; 1992 May; 205(3):1089-97. PubMed ID: 1576992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An exposed tyrosine on the surface of trimethylamine dehydrogenase facilitates electron transfer to electron transferring flavoprotein: kinetics of transfer in wild-type and mutant complexes.
    Wilson EK; Huang L; Sutcliffe MJ; Mathews FS; Hille R; Scrutton NS
    Biochemistry; 1997 Jan; 36(1):41-8. PubMed ID: 8993316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the redox properties of the flavin cofactor through hydrogen-bonding interactions with the N(5) atom: role of alphaSer254 in the electron-transfer flavoprotein from the methylotrophic bacterium W3A1.
    Yang KY; Swenson RP
    Biochemistry; 2007 Mar; 46(9):2289-97. PubMed ID: 17291008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome b5 reductase: role of the si-face residues, proline 92 and tyrosine 93, in structure and catalysis.
    Marohnic CC; Crowley LJ; Davis CA; Smith ET; Barber MJ
    Biochemistry; 2005 Feb; 44(7):2449-61. PubMed ID: 15709757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial purification and characterization of glutaryl-coenzyme A dehydrogenase, electron transfer flavoprotein, and electron transfer flavoprotein-Q oxidoreductase from Paracoccus denitrificans.
    Husain M; Steenkamp DJ
    J Bacteriol; 1985 Aug; 163(2):709-15. PubMed ID: 2991202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of glutamic acid 278 in the redox reaction of the cytochrome c oxidase from Paracoccus denitrificans investigated by FTIR spectroscopy.
    Hellwig P; Behr J; Ostermeier C; Richter OM; Pfitzner U; Odenwald A; Ludwig B; Michel H; Mäntele W
    Biochemistry; 1998 May; 37(20):7390-9. PubMed ID: 9585553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron transfer flavoprotein domain II orientation monitored using double electron-electron resonance between an enzymatically reduced, native FAD cofactor, and spin labels.
    Swanson MA; Kathirvelu V; Majtan T; Frerman FE; Eaton GR; Eaton SS
    Protein Sci; 2011 Mar; 20(3):610-20. PubMed ID: 21308847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes.
    Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP
    Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-transferring flavoprotein has an AMP-binding site in addition to the FAD-binding site.
    Sato K; Nishina Y; Shiga K
    J Biochem; 1993 Aug; 114(2):215-22. PubMed ID: 8262902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The iron-sulfur cluster of electron transfer flavoprotein-ubiquinone oxidoreductase is the electron acceptor for electron transfer flavoprotein.
    Swanson MA; Usselman RJ; Frerman FE; Eaton GR; Eaton SS
    Biochemistry; 2008 Aug; 47(34):8894-901. PubMed ID: 18672901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. alpha Arg-237 in Methylophilus methylotrophus (sp. W3A1) electron-transferring flavoprotein affords approximately 200-millivolt stabilization of the FAD anionic semiquinone and a kinetic block on full reduction to the dihydroquinone.
    Talfournier F; Munro AW; Basran J; Sutcliffe MJ; Daff S; Chapman SK; Scrutton NS
    J Biol Chem; 2001 Jun; 276(23):20190-6. PubMed ID: 11285259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of the redox potentials of FMN in Desulfovibrio vulgaris flavodoxin: thermodynamic properties and crystal structures of glycine-61 mutants.
    O'Farrell PA; Walsh MA; McCarthy AA; Higgins TM; Voordouw G; Mayhew SG
    Biochemistry; 1998 Jun; 37(23):8405-16. PubMed ID: 9622492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational analysis of the riboflavin-responsive ETF:QO-p.Pro456Leu variant associated with mild multiple acyl-CoA dehydrogenase deficiency.
    Lucas TG; Henriques BJ; Gomes CM
    Biochim Biophys Acta Proteins Proteom; 2020 Jun; 1868(6):140393. PubMed ID: 32087359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of methionine 56 in the control of the oxidation-reduction potentials of the Clostridium beijerinckii flavodoxin: effects of substitutions by aliphatic amino acids and evidence for a role of sulfur-flavin interactions.
    Druhan LJ; Swenson RP
    Biochemistry; 1998 Jul; 37(27):9668-78. PubMed ID: 9657679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.