BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9102297)

  • 1. Lithium blocks cell cycle transitions in the first cell cycles of sea urchin embryos, an effect rescued by myo-inositol.
    Becchetti A; Whitaker M
    Development; 1997 Mar; 124(6):1099-107. PubMed ID: 9102297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the phosphatidylinositol cycle in mitosis in sea urchin zygotes. Lithium inhibition is overcome by myo-inositol but not by other cyclitols or sugars.
    Forer A; Sillers PJ
    Exp Cell Res; 1987 May; 170(1):42-55. PubMed ID: 3569434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels.
    Ciapa B; Pesando D; Wilding M; Whitaker M
    Nature; 1994 Apr; 368(6474):875-8. PubMed ID: 8159248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediate or a diacylglycerol analog.
    Busa WB; Gimlich RL
    Dev Biol; 1989 Apr; 132(2):315-24. PubMed ID: 2538373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium alters mitotic progression in stamen hair cells of Tradescantia in a time-dependent and reversible fashion.
    Wolniak SM
    Eur J Cell Biol; 1987 Oct; 44(2):286-93. PubMed ID: 2826168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injection of myo-inositol reverses the effects of lithium on sea urchin blastomeres.
    Livingston BT; Wilt FH
    Dev Growth Differ; 1995 Oct; 37(5):539-543. PubMed ID: 37280965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CA++ in fertilization and mitosis: the phosphatidylinositol cycle in sea urchin gametes and zygotes is involved in control of fertilization and mitosis.
    Sillers PJ; Forer A
    Cell Biol Int Rep; 1985 Mar; 9(3):275-82. PubMed ID: 3986921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sea urchin embryos exposed to thalidomide during early cleavage exhibit abnormal morphogenesis later in development.
    Reichard-Brown JL; Spinner H; McBride K
    Birth Defects Res B Dev Reprod Toxicol; 2009 Dec; 86(6):496-505. PubMed ID: 20025048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear envelope breakdown and mitosis in sand dollar embryos is inhibited by microinjection of calcium buffers in a calcium-reversible fashion, and by antagonists of intracellular Ca2+ channels.
    Silver RB
    Dev Biol; 1989 Jan; 131(1):11-26. PubMed ID: 2491818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the IMPase inhibitor L690,330 on sea urchin development.
    Sconzo G; Cascino D; Amore G; Geraci F; Giudice G
    Cell Biol Int; 1998; 22(2):91-4. PubMed ID: 9878095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of lithium on ionic balance and polyphosphoinositide metabolism during larval vegetalization of the sea urchin Paracentrotus lividus.
    Ciapa B; Maggio K
    Dev Biol; 1993 Sep; 159(1):114-21. PubMed ID: 8396053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translational control of InsP3-induced chromatin condensation during the early cell cycles of sea urchin embryos.
    Twigg J; Patel R; Whitaker M
    Nature; 1988 Mar; 332(6162):366-9. PubMed ID: 3127728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caulerpenyne blocks MBP kinase activation controlling mitosis in sea urchin eggs.
    Pesando D; Pesci-Bardon C; Huitorel P; Girard JP
    Eur J Cell Biol; 1999 Dec; 78(12):903-10. PubMed ID: 10669109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The timing of synthesis of proteins required for mitosis in the cell cycle of the sea urchin embryo.
    Wagenaar EB
    Exp Cell Res; 1983 Apr; 144(2):393-403. PubMed ID: 6840219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of 6-dimethylaminopurine on the length of the cell cycle and on the state of phosphorylation of putative intermediate filament proteins in sea urchin embryos.
    St-Pierre J; Vincent M; Dufresne L
    Cell Motil Cytoskeleton; 1994; 29(2):131-40. PubMed ID: 7820863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of timing of mitotic events on the rate of protein synthesis and DNA replication in sea urchin early cleavages.
    Yamada K
    Cell Prolif; 1998; 31(5-6):203-15. PubMed ID: 9925988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stage-specific effects of teratogens on sea urchin embryogenesis.
    Graillet C; Pagano G; Girard JP
    Teratog Carcinog Mutagen; 1993; 13(1):1-14. PubMed ID: 8100648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redistribution of the kinesin-II subunit KAP from cilia to nuclei during the mitotic and ciliogenic cycles in sea urchin embryos.
    Morris RL; English CN; Lou JE; Dufort FJ; Nordberg J; Terasaki M; Hinkle B
    Dev Biol; 2004 Oct; 274(1):56-69. PubMed ID: 15355788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic lithium and sodium valproate both decrease the concentration of myo-inositol and increase the concentration of inositol monophosphates in rat brain.
    O'Donnell T; Rotzinger S; Nakashima TT; Hanstock CC; Ulrich M; Silverstone PH
    Brain Res; 2000 Oct; 880(1-2):84-91. PubMed ID: 11032992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo.
    Logan CY; Miller JR; Ferkowicz MJ; McClay DR
    Development; 1999 Jan; 126(2):345-57. PubMed ID: 9847248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.