These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9102297)

  • 1. Lithium blocks cell cycle transitions in the first cell cycles of sea urchin embryos, an effect rescued by myo-inositol.
    Becchetti A; Whitaker M
    Development; 1997 Mar; 124(6):1099-107. PubMed ID: 9102297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the phosphatidylinositol cycle in mitosis in sea urchin zygotes. Lithium inhibition is overcome by myo-inositol but not by other cyclitols or sugars.
    Forer A; Sillers PJ
    Exp Cell Res; 1987 May; 170(1):42-55. PubMed ID: 3569434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels.
    Ciapa B; Pesando D; Wilding M; Whitaker M
    Nature; 1994 Apr; 368(6474):875-8. PubMed ID: 8159248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediate or a diacylglycerol analog.
    Busa WB; Gimlich RL
    Dev Biol; 1989 Apr; 132(2):315-24. PubMed ID: 2538373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium alters mitotic progression in stamen hair cells of Tradescantia in a time-dependent and reversible fashion.
    Wolniak SM
    Eur J Cell Biol; 1987 Oct; 44(2):286-93. PubMed ID: 2826168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injection of myo-inositol reverses the effects of lithium on sea urchin blastomeres.
    Livingston BT; Wilt FH
    Dev Growth Differ; 1995 Oct; 37(5):539-543. PubMed ID: 37280965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CA++ in fertilization and mitosis: the phosphatidylinositol cycle in sea urchin gametes and zygotes is involved in control of fertilization and mitosis.
    Sillers PJ; Forer A
    Cell Biol Int Rep; 1985 Mar; 9(3):275-82. PubMed ID: 3986921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sea urchin embryos exposed to thalidomide during early cleavage exhibit abnormal morphogenesis later in development.
    Reichard-Brown JL; Spinner H; McBride K
    Birth Defects Res B Dev Reprod Toxicol; 2009 Dec; 86(6):496-505. PubMed ID: 20025048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear envelope breakdown and mitosis in sand dollar embryos is inhibited by microinjection of calcium buffers in a calcium-reversible fashion, and by antagonists of intracellular Ca2+ channels.
    Silver RB
    Dev Biol; 1989 Jan; 131(1):11-26. PubMed ID: 2491818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the IMPase inhibitor L690,330 on sea urchin development.
    Sconzo G; Cascino D; Amore G; Geraci F; Giudice G
    Cell Biol Int; 1998; 22(2):91-4. PubMed ID: 9878095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of lithium on ionic balance and polyphosphoinositide metabolism during larval vegetalization of the sea urchin Paracentrotus lividus.
    Ciapa B; Maggio K
    Dev Biol; 1993 Sep; 159(1):114-21. PubMed ID: 8396053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translational control of InsP3-induced chromatin condensation during the early cell cycles of sea urchin embryos.
    Twigg J; Patel R; Whitaker M
    Nature; 1988 Mar; 332(6162):366-9. PubMed ID: 3127728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caulerpenyne blocks MBP kinase activation controlling mitosis in sea urchin eggs.
    Pesando D; Pesci-Bardon C; Huitorel P; Girard JP
    Eur J Cell Biol; 1999 Dec; 78(12):903-10. PubMed ID: 10669109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The timing of synthesis of proteins required for mitosis in the cell cycle of the sea urchin embryo.
    Wagenaar EB
    Exp Cell Res; 1983 Apr; 144(2):393-403. PubMed ID: 6840219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of 6-dimethylaminopurine on the length of the cell cycle and on the state of phosphorylation of putative intermediate filament proteins in sea urchin embryos.
    St-Pierre J; Vincent M; Dufresne L
    Cell Motil Cytoskeleton; 1994; 29(2):131-40. PubMed ID: 7820863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of timing of mitotic events on the rate of protein synthesis and DNA replication in sea urchin early cleavages.
    Yamada K
    Cell Prolif; 1998; 31(5-6):203-15. PubMed ID: 9925988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stage-specific effects of teratogens on sea urchin embryogenesis.
    Graillet C; Pagano G; Girard JP
    Teratog Carcinog Mutagen; 1993; 13(1):1-14. PubMed ID: 8100648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redistribution of the kinesin-II subunit KAP from cilia to nuclei during the mitotic and ciliogenic cycles in sea urchin embryos.
    Morris RL; English CN; Lou JE; Dufort FJ; Nordberg J; Terasaki M; Hinkle B
    Dev Biol; 2004 Oct; 274(1):56-69. PubMed ID: 15355788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic lithium and sodium valproate both decrease the concentration of myo-inositol and increase the concentration of inositol monophosphates in rat brain.
    O'Donnell T; Rotzinger S; Nakashima TT; Hanstock CC; Ulrich M; Silverstone PH
    Brain Res; 2000 Oct; 880(1-2):84-91. PubMed ID: 11032992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo.
    Logan CY; Miller JR; Ferkowicz MJ; McClay DR
    Development; 1999 Jan; 126(2):345-57. PubMed ID: 9847248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.