These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
457 related articles for article (PubMed ID: 9102456)
1. Selenoprotein synthesis in archaea: identification of an mRNA element of Methanococcus jannaschii probably directing selenocysteine insertion. Wilting R; Schorling S; Persson BC; Böck A J Mol Biol; 1997 Mar; 266(4):637-41. PubMed ID: 9102456 [TBL] [Abstract][Full Text] [Related]
2. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes. Arnér ES; Sarioglu H; Lottspeich F; Holmgren A; Böck A J Mol Biol; 1999 Oct; 292(5):1003-16. PubMed ID: 10512699 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterisation of the selenocysteine-specific translation factor SelB from the archaeon Methanococcus jannaschii. Rother M; Wilting R; Commans S; Böck A J Mol Biol; 2000 Jun; 299(2):351-8. PubMed ID: 10860743 [TBL] [Abstract][Full Text] [Related]
4. Selenoprotein synthesis in archaea. Rother M; Resch A; Wilting R; Böck A Biofactors; 2001; 14(1-4):75-83. PubMed ID: 11568443 [TBL] [Abstract][Full Text] [Related]
5. A pseudo-SECIS element in Methanococcus voltae documents evolution of a selenoprotein into a sulphur-containing homologue. Böck A; Rother M Arch Microbiol; 2005 Feb; 183(2):148-50. PubMed ID: 15611862 [TBL] [Abstract][Full Text] [Related]
6. Heterologous expression of archaeal selenoprotein genes directed by the SECIS element located in the 3' non-translated region. Rother M; Resch A; Gardner WL; Whitman WB; Böck A Mol Microbiol; 2001 May; 40(4):900-8. PubMed ID: 11401697 [TBL] [Abstract][Full Text] [Related]
7. Dynamics and efficiency in vivo of UGA-directed selenocysteine insertion at the ribosome. Suppmann S; Persson BC; Böck A EMBO J; 1999 Apr; 18(8):2284-93. PubMed ID: 10205181 [TBL] [Abstract][Full Text] [Related]
8. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3' untranslated region. Berry MJ; Banu L; Chen YY; Mandel SJ; Kieffer JD; Harney JW; Larsen PR Nature; 1991 Sep; 353(6341):273-6. PubMed ID: 1832744 [TBL] [Abstract][Full Text] [Related]
9. Genomic structures of viral agents in relation to the biosynthesis of selenoproteins. Taylor EW; Nadimpalli RG; Ramanathan CS Biol Trace Elem Res; 1997 Jan; 56(1):63-91. PubMed ID: 9152512 [TBL] [Abstract][Full Text] [Related]
10. Interplay between termination and translation machinery in eukaryotic selenoprotein synthesis. Grundner-Culemann E; Martin GW; Tujebajeva R; Harney JW; Berry MJ J Mol Biol; 2001 Jul; 310(4):699-707. PubMed ID: 11453681 [TBL] [Abstract][Full Text] [Related]
11. Conserved nucleotide sequences in the open reading frame and 3' untranslated region of selenoprotein P mRNA. Hill KE; Lloyd RS; Burk RF Proc Natl Acad Sci U S A; 1993 Jan; 90(2):537-41. PubMed ID: 8421687 [TBL] [Abstract][Full Text] [Related]
12. The progress in mechanism of selenoprotein biosynthesis. Jiang ZH; Mu Y; Li WJ; Yan GL; Luo GM Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 Jul; 34(4):395-9. PubMed ID: 12098758 [TBL] [Abstract][Full Text] [Related]
13. Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes. Chavatte L; Brown BA; Driscoll DM Nat Struct Mol Biol; 2005 May; 12(5):408-16. PubMed ID: 15821744 [TBL] [Abstract][Full Text] [Related]
14. Factors and selenocysteine insertion sequence requirements for the synthesis of selenoproteins from a gram-positive anaerobe in Escherichia coli. Gursinsky T; Gröbe D; Schierhorn A; Jäger J; Andreesen JR; Söhling B Appl Environ Microbiol; 2008 Mar; 74(5):1385-93. PubMed ID: 18165360 [TBL] [Abstract][Full Text] [Related]
15. Selenoprotein synthesis: UGA does not end the story. Allmang C; Krol A Biochimie; 2006 Nov; 88(11):1561-71. PubMed ID: 16737768 [TBL] [Abstract][Full Text] [Related]
17. Recoding elements located adjacent to a subset of eukaryal selenocysteine-specifying UGA codons. Howard MT; Aggarwal G; Anderson CB; Khatri S; Flanigan KM; Atkins JF EMBO J; 2005 Apr; 24(8):1596-607. PubMed ID: 15791204 [TBL] [Abstract][Full Text] [Related]
18. Protein similarity search under mRNA structural constraints: application to targeted selenocysteine insertion. Backofen R; Narayanaswamy NS; Swidan F In Silico Biol; 2002; 2(3):275-90. PubMed ID: 12542413 [TBL] [Abstract][Full Text] [Related]
19. Selenocysteine incorporation in eukaryotes: insights into mechanism and efficiency from sequence, structure, and spacing proximity studies of the type 1 deiodinase SECIS element. Martin GW; Harney JW; Berry MJ RNA; 1996 Feb; 2(2):171-82. PubMed ID: 8601283 [TBL] [Abstract][Full Text] [Related]
20. A model for Sec incorporation with the regions upstream of the UGA Sec codon to play a key role. Goto C; Osaka T; Mizutani T Biofactors; 2001; 14(1-4):25-35. PubMed ID: 11568437 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]