These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 9102460)
21. Evidence that Bacillus catabolite control protein CcpA interacts with RNA polymerase to inhibit transcription. Kim JH; Yang YK; Chambliss GH Mol Microbiol; 2005 Apr; 56(1):155-62. PubMed ID: 15773986 [TBL] [Abstract][Full Text] [Related]
22. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. Lulko AT; Buist G; Kok J; Kuipers OP J Mol Microbiol Biotechnol; 2007; 12(1-2):82-95. PubMed ID: 17183215 [TBL] [Abstract][Full Text] [Related]
23. In vitro binding of the CcpA protein of Bacillus megaterium to cis-acting catabolite responsive elements (CREs) of gram-positive bacteria. Ramseier TM; Reizer J; Küster E; Hillen W; Saier MH FEMS Microbiol Lett; 1995 Jun; 129(2-3):207-13. PubMed ID: 7607401 [TBL] [Abstract][Full Text] [Related]
24. Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. Jones BE; Dossonnet V; Küster E; Hillen W; Deutscher J; Klevit RE J Biol Chem; 1997 Oct; 272(42):26530-5. PubMed ID: 9334231 [TBL] [Abstract][Full Text] [Related]
25. Trans-translation is involved in the CcpA-dependent tagging and degradation of TreP in Bacillus subtilis. Ujiie H; Matsutani T; Tomatsu H; Fujihara A; Ushida C; Miwa Y; Fujita Y; Himeno H; Muto A J Biochem; 2009 Jan; 145(1):59-66. PubMed ID: 18977770 [TBL] [Abstract][Full Text] [Related]
27. Transcription of the xyl operon is controlled in Bacillus subtilis by tandem overlapping operators spaced by four base-pairs. Dahl MK; Degenkolb J; Hillen W J Mol Biol; 1994 Oct; 243(3):413-24. PubMed ID: 7966270 [TBL] [Abstract][Full Text] [Related]
28. Identification of ligands affecting the activity of the transcriptional repressor CcpN from Bacillus subtilis. Licht A; Golbik R; Brantl S J Mol Biol; 2008 Jun; 380(1):17-30. PubMed ID: 18511073 [TBL] [Abstract][Full Text] [Related]
29. Transcriptional activation of the Bacillus subtilis ackA promoter requires sequences upstream of the CcpA binding site. Moir-Blais TR; Grundy FJ; Henkin TM J Bacteriol; 2001 Apr; 183(7):2389-93. PubMed ID: 11244084 [TBL] [Abstract][Full Text] [Related]
30. The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis. Faires N; Tobisch S; Bachem S; Martin-Verstraete I; Hecker M; Stülke J J Mol Microbiol Biotechnol; 1999 Aug; 1(1):141-8. PubMed ID: 10941796 [TBL] [Abstract][Full Text] [Related]
31. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. Martin-Verstraete I; Stülke J; Klier A; Rapoport G J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486 [TBL] [Abstract][Full Text] [Related]
32. Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation. Ludwig H; Rebhan N; Blencke HM; Merzbacher M; Stülke J Mol Microbiol; 2002 Jul; 45(2):543-53. PubMed ID: 12123463 [TBL] [Abstract][Full Text] [Related]
33. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Servant P; Le Coq D; Aymerich S Mol Microbiol; 2005 Mar; 55(5):1435-51. PubMed ID: 15720552 [TBL] [Abstract][Full Text] [Related]
34. Cloning, expression and functional analyses of the catabolite control protein CcpA from Bacillus megaterium. Hueck CJ; Kraus A; Schmiedel D; Hillen W Mol Microbiol; 1995 Jun; 16(5):855-64. PubMed ID: 7476184 [TBL] [Abstract][Full Text] [Related]
35. Regulation of pho regulon gene expression by the carbon control protein A, CcpA, in Bacillus subtilis. Choi SK; Saier MH J Mol Microbiol Biotechnol; 2005; 10(1):40-50. PubMed ID: 16491025 [TBL] [Abstract][Full Text] [Related]
36. Carbon catabolite control of the metabolic network in Bacillus subtilis. Fujita Y Biosci Biotechnol Biochem; 2009 Feb; 73(2):245-59. PubMed ID: 19202299 [TBL] [Abstract][Full Text] [Related]
37. Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr. Reizer J; Bergstedt U; Galinier A; Küster E; Saier MH; Hillen W; Steinmetz M; Deutscher J J Bacteriol; 1996 Sep; 178(18):5480-6. PubMed ID: 8808939 [TBL] [Abstract][Full Text] [Related]
38. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions. Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010 [TBL] [Abstract][Full Text] [Related]
39. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD. Puri-Taneja A; Schau M; Chen Y; Hulett FM J Bacteriol; 2007 May; 189(9):3348-58. PubMed ID: 17322317 [TBL] [Abstract][Full Text] [Related]
40. [Knockout of the hprK gene in B. subtilis CcpA mutant and its influence on riboflavin fermentation]. Zhang F; Song H; Ban R Sheng Wu Gong Cheng Xue Bao; 2006 Jul; 22(4):534-8. PubMed ID: 16894883 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]