These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 9102471)
1. An automated classification of the structure of protein loops. Oliva B; Bates PA; Querol E; Avilés FX; Sternberg MJ J Mol Biol; 1997 Mar; 266(4):814-30. PubMed ID: 9102471 [TBL] [Abstract][Full Text] [Related]
2. Conformational analysis and clustering of short and medium size loops connecting regular secondary structures: a database for modeling and prediction. Donate LE; Rufino SD; Canard LH; Blundell TL Protein Sci; 1996 Dec; 5(12):2600-16. PubMed ID: 8976569 [TBL] [Abstract][Full Text] [Related]
3. Protein loops on structurally similar scaffolds: database and conformational analysis. Li W; Liu Z; Lai L Biopolymers; 1999 May; 49(6):481-95. PubMed ID: 10193195 [TBL] [Abstract][Full Text] [Related]
4. Prediction of the conformation and geometry of loops in globular proteins: testing ArchDB, a structural classification of loops. Fernandez-Fuentes N; Querol E; Aviles FX; Sternberg MJ; Oliva B Proteins; 2005 Sep; 60(4):746-57. PubMed ID: 16021623 [TBL] [Abstract][Full Text] [Related]
5. Automated classification of antibody complementarity determining region 3 of the heavy chain (H3) loops into canonical forms and its application to protein structure prediction. Oliva B; Bates PA; Querol E; Avilés FX; Sternberg MJ J Mol Biol; 1998 Jun; 279(5):1193-210. PubMed ID: 9642095 [TBL] [Abstract][Full Text] [Related]
6. Predicting the conformational class of short and medium size loops connecting regular secondary structures: application to comparative modelling. Rufino SD; Donate LE; Canard LH; Blundell TL J Mol Biol; 1997 Mar; 267(2):352-67. PubMed ID: 9096231 [TBL] [Abstract][Full Text] [Related]
7. Analysis of C alpha geometry in protein structures. Oldfield TJ; Hubbard RE Proteins; 1994 Apr; 18(4):324-37. PubMed ID: 8208725 [TBL] [Abstract][Full Text] [Related]
8. Clustering of protein structural fragments reveals modular building block approach of nature. Tendulkar AV; Joshi AA; Sohoni MA; Wangikar PP J Mol Biol; 2004 Apr; 338(3):611-29. PubMed ID: 15081817 [TBL] [Abstract][Full Text] [Related]
9. [A turning point in the knowledge of the structure-function-activity relations of elastin]. Alix AJ J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705 [TBL] [Abstract][Full Text] [Related]
10. New efficient statistical sequence-dependent structure prediction of short to medium-sized protein loops based on an exhaustive loop classification. Wojcik J; Mornon JP; Chomilier J J Mol Biol; 1999 Jun; 289(5):1469-90. PubMed ID: 10373380 [TBL] [Abstract][Full Text] [Related]
11. A global taxonomy of loops in globular proteins. Kwasigroch JM; Chomilier J; Mornon JP J Mol Biol; 1996 Jun; 259(4):855-72. PubMed ID: 8683588 [TBL] [Abstract][Full Text] [Related]
12. Analysis, clustering and prediction of the conformation of short and medium size loops connecting regular secondary structures. Rufino SD; Donate LE; Canard L; Blundell TL Pac Symp Biocomput; 1996; ():570-89. PubMed ID: 9390259 [TBL] [Abstract][Full Text] [Related]
13. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin. Mehler EL; Hassan SA; Kortagere S; Weinstein H Proteins; 2006 Aug; 64(3):673-90. PubMed ID: 16729264 [TBL] [Abstract][Full Text] [Related]
14. Classification of common functional loops of kinase super-families. Fernandez-Fuentes N; Hermoso A; Espadaler J; Querol E; Aviles FX; Oliva B Proteins; 2004 Aug; 56(3):539-55. PubMed ID: 15229886 [TBL] [Abstract][Full Text] [Related]
15. Conformational interconversions in peptide beta-turns: analysis of turns in proteins and computational estimates of barriers. Gunasekaran K; Gomathi L; Ramakrishnan C; Chandrasekhar J; Balaram P J Mol Biol; 1998 Dec; 284(5):1505-16. PubMed ID: 9878367 [TBL] [Abstract][Full Text] [Related]
16. PDB-based protein loop prediction: parameters for selection and methods for optimization. van Vlijmen HW; Karplus M J Mol Biol; 1997 Apr; 267(4):975-1001. PubMed ID: 9135125 [TBL] [Abstract][Full Text] [Related]
17. Modulation of intrinsic phi,psi propensities of amino acids by neighbouring residues in the coil regions of protein structures: NMR analysis and dissection of a beta-hairpin peptide. Griffiths-Jones SR; Sharman GJ; Maynard AJ; Searle MS J Mol Biol; 1998 Dec; 284(5):1597-609. PubMed ID: 9878373 [TBL] [Abstract][Full Text] [Related]
18. The nature of the turn in omega loops of proteins. Pal M; Dasgupta S Proteins; 2003 Jun; 51(4):591-606. PubMed ID: 12784218 [TBL] [Abstract][Full Text] [Related]
19. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 A resolution: structural characterization of proline-substitution sites for protein thermostabilization. Watanabe K; Hata Y; Kizaki H; Katsube Y; Suzuki Y J Mol Biol; 1997 May; 269(1):142-53. PubMed ID: 9193006 [TBL] [Abstract][Full Text] [Related]
20. Modeling protein loops using a phi i + 1, psi i dimer database. Sudarsanam S; DuBose RF; March CJ; Srinivasan S Protein Sci; 1995 Jul; 4(7):1412-20. PubMed ID: 7670382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]