These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 910340)

  • 1. Solute flux in hemodialysis and hemofiltration membranes.
    Villarroel F; Klein E; Holland F
    Trans Am Soc Artif Intern Organs; 1977; 23():225-33. PubMed ID: 910340
    [No Abstract]   [Full Text] [Related]  

  • 2. Solute transport in continuous arteriovenous hemodiafiltration: a new mathematical model applied to clinical data.
    Vincent HH; van Ittersum FJ; Akcahuseyin E; Vos MC; van Duyl WA; Schalekamp MA
    Blood Purif; 1990; 8(3):149-59. PubMed ID: 2244992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bulk mass transport limitations during high-flux hemodialysis.
    Zydney AL
    Artif Organs; 1993 Nov; 17(11):919-24. PubMed ID: 8110060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dialysis of middle molecules at pulsatile flow.
    Ozdural AR; Pişkin E
    J Dial; 1979; 3(1):89-96. PubMed ID: 469104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforced cellulose acetate dialysis membranes.
    Mason NS; Lindan O; Sparks RE
    Trans Am Soc Artif Intern Organs; 1968; 14():31-5. PubMed ID: 5701551
    [No Abstract]   [Full Text] [Related]  

  • 6. Rejection of solutes by hemodialysis/hemofiltration membranes.
    Holland FF; Klein E; Wendt RP; Eberle K
    Trans Am Soc Artif Intern Organs; 1978; 24():662-6. PubMed ID: 213869
    [No Abstract]   [Full Text] [Related]  

  • 7. Slow continuous hemodialysis--new therapy for acute renal failure in critically ill patients--Part 1. Theoretical consideration and new technique.
    Kudoh Y; Iimura O
    Jpn Circ J; 1988 Oct; 52(10):1171-82. PubMed ID: 3210294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solute Transport in Hemodialysis: Advances and Limitations of Current Membrane Technology.
    Clark WR; Gao D; Neri M; Ronco C
    Contrib Nephrol; 2017; 191():84-99. PubMed ID: 28910793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of membrane composition and structure on solute removal and biocompatibility in hemodialysis.
    Clark WR; Hamburger RJ; Lysaght MJ
    Kidney Int; 1999 Dec; 56(6):2005-15. PubMed ID: 10594776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane characteristics, permeability parameters, and frictional coefficients for cuprophane.
    Fritzinger BK; Brauman SK; Lyman DJ
    J Biomed Mater Res; 1971 Jan; 5(1):3-16. PubMed ID: 5554095
    [No Abstract]   [Full Text] [Related]  

  • 11. Backfiltration in hemodialysis with highly permeable membranes.
    Stiller S; Mann H; Brunner H
    Contrib Nephrol; 1985; 46():23-32. PubMed ID: 4006478
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of packing density of hollow fibers on solute removal performances of dialyzers.
    Yamashita AC; Fujita R; Tomisawa N; Jinbo Y; Yamamura M
    Hemodial Int; 2009 Oct; 13 Suppl 1():S2-7. PubMed ID: 19775420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Hemodiafiltration: choice or necessity in high-efficiency treatment?].
    Ghezzi PM; Gervasio R
    Minerva Urol Nefrol; 1990; 42(1):27-9. PubMed ID: 2202068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does convective dialysis therapy applied daily approach renal blood purification?
    Ledebo I
    Kidney Int Suppl; 2001 Feb; 78():S286-91. PubMed ID: 11169028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro permeability studies of peritoneal (P), cuprophan (C), and polycarbonate (PCM) membranes.
    Pitts T; Mackey M; Barbour GL
    Trans Am Soc Artif Intern Organs; 1978; 24():150-4. PubMed ID: 715993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internal filtration-enhanced hemodialysis is a cost-effective treatment in view of solute removal.
    Koda Y
    Blood Purif; 2004; 22 Suppl 2():36-9. PubMed ID: 15655322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimisation of solute transport in dialysers using a three-dimensional finite volume model.
    Eloot S; Vierendeels J; Verdonck P
    Comput Methods Biomech Biomed Engin; 2006 Dec; 9(6):363-70. PubMed ID: 17145670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MCO Membranes: Enhanced Selectivity in High-Flux Class.
    Boschetti-de-Fierro A; Voigt M; Storr M; Krause B
    Sci Rep; 2015 Dec; 5():18448. PubMed ID: 26669756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of a reduced inner diameter of hollow fibers in hemodialyzers.
    Ronco C; Brendolan A; Lupi A; Metry G; Levin NW
    Kidney Int; 2000 Aug; 58(2):809-17. PubMed ID: 10916106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The coupling of solute fluxes in membranes.
    Galey WR; Van Bruggen JT
    J Gen Physiol; 1970 Feb; 55(2):220-42. PubMed ID: 5413079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.