BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 9103516)

  • 1. Uptake and release of [3H]formycin B via sodium-dependent nucleoside transporters in mouse leukemic L1210/MA27.1 cells.
    Borgland SL; Parkinson FE
    J Pharmacol Exp Ther; 1997 Apr; 281(1):347-53. PubMed ID: 9103516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 5-hexyl-2'-deoxyuridine inhibition of nucleoside transport in L1210 cells.
    Cory JG; Downes DL; Ng CY; Belt JA
    Oncol Res; 1992; 4(4-5):175-9. PubMed ID: 1504377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium-dependent and equilibrative nucleoside transport systems in L1210 mouse leukemia cells: effect of inhibitors of equilibrative systems on the content and retention of nucleosides.
    Dagnino L; Paterson AR
    Cancer Res; 1990 Oct; 50(20):6549-53. PubMed ID: 1698538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of 2',2'-difluorodeoxycytidine (gemcitabine) and formycin B with the Na+-dependent and -independent nucleoside transporters of Ehrlich ascites tumor cells.
    Burke T; Lee S; Ferguson PJ; Hammond JR
    J Pharmacol Exp Ther; 1998 Sep; 286(3):1333-40. PubMed ID: 9732397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na(+)-dependent, active nucleoside transport in S49 mouse lymphoma cells and loss in AE-1 mutant deficient in facilitated nucleoside transport.
    Plagemann PG
    J Cell Biochem; 1991 May; 46(1):54-9. PubMed ID: 1874800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Na(+)-dependent, active nucleoside transport in rat and mouse peritoneal macrophages, a mouse macrophage cell line and normal rat kidney cells.
    Plagemann PG; Aran JM
    Biochim Biophys Acta; 1990 Oct; 1028(3):289-98. PubMed ID: 2223800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na(+)-dependent, active and Na(+)-independent, facilitated transport of formycin B in mouse spleen lymphocytes.
    Plagemann PG; Aran JM; Woffendin C
    Biochim Biophys Acta; 1990 Feb; 1022(1):93-102. PubMed ID: 2302407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of equilibrative and concentrative Na+-dependent (cif) nucleoside transport in acute promyelocytic leukemia NB4 cells.
    Roovers KI; Meckling-Gill KA
    J Cell Physiol; 1996 Mar; 166(3):593-600. PubMed ID: 8600163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium-dependent nucleoside transport in rabbit intestinal epithelium.
    Roden M; Paterson AR; Turnheim K
    Gastroenterology; 1991 Jun; 100(6):1553-62. PubMed ID: 2019361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pirarubicin is taken up by a uridine-transportable sodium-dependent concentrative nucleoside transporter in Ehrlich ascites carcinoma cells.
    Nagai K; Nagasawa K; Ishimoto A; Fujimoto S
    Cancer Chemother Pharmacol; 2003 Jun; 51(6):512-8. PubMed ID: 12679883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of iodotubercidin on adenosine kinase activity and nucleoside transport in DDT1 MF-2 smooth muscle cells.
    Parkinson FE; Geiger JD
    J Pharmacol Exp Ther; 1996 Jun; 277(3):1397-401. PubMed ID: 8667202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L1210/B23.1 cells express equilibrative, inhibitor-sensitive nucleoside transport activity and lack two parental nucleoside transport activities.
    Vijayalakshmi D; Dagnino L; Belt JA; Gati WP; Cass CE; Paterson AR
    J Biol Chem; 1992 Aug; 267(24):16951-6. PubMed ID: 1512237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na(+)-dependent, active nucleoside transport in mouse spleen lymphocytes, leukemia cells, fibroblasts and macrophages, but not in equivalent human or pig cells; dipyridamole enhances nucleoside salvage by cells with both active and facilitated transport.
    Plagemann PG; Aran JM
    Biochim Biophys Acta; 1990 Jun; 1025(1):32-42. PubMed ID: 2369575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of the anthracycline pirarubicin into mouse M5076 ovarian sarcoma cells via a sodium-dependent nucleoside transport system.
    Nagai K; Nagasawa K; Fujimoto S
    Cancer Chemother Pharmacol; 2005 Mar; 55(3):222-30. PubMed ID: 15526202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of an L1210 cell line retaining the sodium-dependent carrier cif as its sole nucleoside transport activity.
    Crawford CR; Ng CY; Belt JA
    J Biol Chem; 1990 Aug; 265(23):13730-4. PubMed ID: 1974252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleoside transport in brush border membrane vesicles from human kidney.
    Gutierrez MM; Brett CM; Ott RJ; Hui AC; Giacomini KM
    Biochim Biophys Acta; 1992 Mar; 1105(1):1-9. PubMed ID: 1567888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium-dependent nucleoside transport in the human intestinal brush-border membrane.
    Patil SD; Unadkat JD
    Am J Physiol; 1997 Jun; 272(6 Pt 1):G1314-20. PubMed ID: 9227465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purine uptake and release in rat C6 glioma cells: nucleoside transport and purine metabolism under ATP-depleting conditions.
    Sinclair CJ; LaRivière CG; Young JD; Cass CE; Baldwin SA; Parkinson FE
    J Neurochem; 2000 Oct; 75(4):1528-38. PubMed ID: 10987833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleoside transport in L1210 murine leukemia cells. Evidence for three transporters.
    Crawford CR; Ng CY; Noel LD; Belt JA
    J Biol Chem; 1990 Jun; 265(17):9732-6. PubMed ID: 2351668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleoside transporter expression and function in cultured mouse astrocytes.
    Peng L; Huang R; Yu AC; Fung KY; Rathbone MP; Hertz L
    Glia; 2005 Oct; 52(1):25-35. PubMed ID: 15892125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.