These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 9103523)
1. Cytochrome P450 2E1 is the principal catalyst of human oxidative halothane metabolism in vitro. Spracklin DK; Hankins DC; Fisher JM; Thummel KE; Kharasch ED J Pharmacol Exp Ther; 1997 Apr; 281(1):400-11. PubMed ID: 9103523 [TBL] [Abstract][Full Text] [Related]
2. Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A4. Spracklin DK; Thummel KE; Kharasch ED Drug Metab Dispos; 1996 Sep; 24(9):976-83. PubMed ID: 8886607 [TBL] [Abstract][Full Text] [Related]
3. Identification of the human liver microsomal cytochrome P450s involved in the metabolism of N-nitrosodi-n-propylamine. Teiber JF; Hollenberg PF Carcinogenesis; 2000 Aug; 21(8):1559-66. PubMed ID: 10910959 [TBL] [Abstract][Full Text] [Related]
4. Stereoselective metabolism of enflurane by human liver cytochrome P450 2E1. Garton KJ; Yuen P; Meinwald J; Thummel KE; Kharasch ED Drug Metab Dispos; 1995 Dec; 23(12):1426-30. PubMed ID: 8689955 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the NADPH-dependent covalent binding of [14C]halothane to human liver microsomes: a role for cytochrome P4502E1 at low substrate concentrations. Madan A; Parkinson A Drug Metab Dispos; 1996 Dec; 24(12):1307-13. PubMed ID: 8971135 [TBL] [Abstract][Full Text] [Related]
6. Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implications for interindividual variability in disposition, efficacy, and drug interactions. Labroo RB; Paine MF; Thummel KE; Kharasch ED Drug Metab Dispos; 1997 Sep; 25(9):1072-80. PubMed ID: 9311623 [TBL] [Abstract][Full Text] [Related]
7. Cytochrome P450-mediated metabolism of haloperidol and reduced haloperidol to pyridinium metabolites. Avent KM; DeVoss JJ; Gillam EM Chem Res Toxicol; 2006 Jul; 19(7):914-20. PubMed ID: 16841959 [TBL] [Abstract][Full Text] [Related]
8. Kinetic analysis of the activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by heterologously expressed human P450 enzymes and the effect of P450-specific chemical inhibitors on this activation in human liver microsomes. Patten CJ; Smith TJ; Murphy SE; Wang MH; Lee J; Tynes RE; Koch P; Yang CS Arch Biochem Biophys; 1996 Sep; 333(1):127-38. PubMed ID: 8806763 [TBL] [Abstract][Full Text] [Related]
9. Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane. Kharasch ED; Thummel KE Anesthesiology; 1993 Oct; 79(4):795-807. PubMed ID: 8214760 [TBL] [Abstract][Full Text] [Related]
11. Human liver microsomes are efficient catalysts of 1,3-butadiene oxidation: evidence for major roles by cytochromes P450 2A6 and 2E1. Duescher RJ; Elfarra AA Arch Biochem Biophys; 1994 Jun; 311(2):342-9. PubMed ID: 8203896 [TBL] [Abstract][Full Text] [Related]
12. Involvement of multiple cytochrome P450 and UDP-glucuronosyltransferase enzymes in the in vitro metabolism of muraglitazar. Zhang D; Wang L; Chandrasena G; Ma L; Zhu M; Zhang H; Davis CD; Humphreys WG Drug Metab Dispos; 2007 Jan; 35(1):139-49. PubMed ID: 17062778 [TBL] [Abstract][Full Text] [Related]
13. Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs. Shimada T; Yamazaki H; Mimura M; Wakamiya N; Ueng YF; Guengerich FP; Inui Y Drug Metab Dispos; 1996 May; 24(5):515-22. PubMed ID: 8723730 [TBL] [Abstract][Full Text] [Related]
14. Microsomal ethanol oxidizing system activity by human hepatic cytochrome P450s. Asai H; Imaoka S; Kuroki T; Monna T; Funae Y J Pharmacol Exp Ther; 1996 May; 277(2):1004-9. PubMed ID: 8627510 [TBL] [Abstract][Full Text] [Related]
15. CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Dehal SS; Kupfer D Cancer Res; 1997 Aug; 57(16):3402-6. PubMed ID: 9270005 [TBL] [Abstract][Full Text] [Related]
16. Microsomal oxidation of N,N-diethylformamide and its effect on P450-dependent monooxygenases in rat liver. Amato G; Longo V; Mazzaccaro A; Gervasi PG Chem Res Toxicol; 1996; 9(5):882-90. PubMed ID: 8828925 [TBL] [Abstract][Full Text] [Related]
17. Identification of the human hepatic cytochromes P450 involved in the in vitro oxidation of antipyrine. Sharer JE; Wrighton SA Drug Metab Dispos; 1996 Apr; 24(4):487-94. PubMed ID: 8801065 [TBL] [Abstract][Full Text] [Related]
18. Sulfoxidation of cysteine and mercapturic acid conjugates of the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (compound A). Altuntas TG; Park SB; Kharasch ED Chem Res Toxicol; 2004 Mar; 17(3):435-45. PubMed ID: 15025515 [TBL] [Abstract][Full Text] [Related]
19. Metabolism of vanoxerine, 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine, by human cytochrome P450 enzymes. Cherstniakova SA; Bi D; Fuller DR; Mojsiak JZ; Collins JM; Cantilena LR Drug Metab Dispos; 2001 Sep; 29(9):1216-20. PubMed ID: 11502731 [TBL] [Abstract][Full Text] [Related]
20. Human halothane metabolism, lipid peroxidation, and cytochromes P(450)2A6 and P(450)3A4. Kharasch ED; Hankins DC; Fenstamaker K; Cox K Eur J Clin Pharmacol; 2000; 55(11-12):853-9. PubMed ID: 10805064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]