These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 9104011)
1. Optimization models for the force and energy in competitive running. Behncke H J Math Biol; 1997 Mar; 35(4):375-90. PubMed ID: 9104011 [TBL] [Abstract][Full Text] [Related]
2. A mathematical model for the force and energetics in competitive running. Behncke H J Math Biol; 1993; 31(8):853-78. PubMed ID: 8263429 [TBL] [Abstract][Full Text] [Related]
3. Oxygen uptake and energy expenditure during horizontal treadmill running. Hagan RD; Strathman T; Strathman L; Gettman LR J Appl Physiol Respir Environ Exerc Physiol; 1980 Oct; 49(4):571-5. PubMed ID: 7440273 [TBL] [Abstract][Full Text] [Related]
4. The relation of oxygen intake and velocity of walking and running, in competition walkers. Menier DR; Pugh LG J Physiol; 1968 Aug; 197(3):717-21. PubMed ID: 5666183 [TBL] [Abstract][Full Text] [Related]
5. Optimization of Running Strategies According to the Physiological Parameters for a Two-Runners Model. Fiorini C Bull Math Biol; 2017 Jan; 79(1):143-162. PubMed ID: 27826878 [TBL] [Abstract][Full Text] [Related]
6. Air resistance and its influence on the biomechanics and energetics of sprinting at sea level and at altitude. Ward-Smith AJ J Biomech; 1984; 17(5):339-47. PubMed ID: 6736069 [TBL] [Abstract][Full Text] [Related]
7. The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. Pugh LG J Physiol; 1971 Mar; 213(2):255-76. PubMed ID: 5574828 [TBL] [Abstract][Full Text] [Related]
8. A theoretical analysis of the effect of altitude on running performance. Péronnet F; Thibault G; Cousineau DL J Appl Physiol (1985); 1991 Jan; 70(1):399-404. PubMed ID: 2010398 [TBL] [Abstract][Full Text] [Related]
9. The apparently contradictory energetics of hopping and running: the counter-intuitive effect of constraints resolves the paradox. Gutmann AK; Bertram JE J Exp Biol; 2017 Jan; 220(Pt 2):167-170. PubMed ID: 27875261 [TBL] [Abstract][Full Text] [Related]
10. Energetics of world records in middle distance running. Camus G; Thys H; Lhermerout C Arch Int Physiol Biochim; 1988 Jun; 96(2):137-9. PubMed ID: 2460058 [No Abstract] [Full Text] [Related]
13. The cost of leg forces in bipedal locomotion: a simple optimization study. Rebula JR; Kuo AD PLoS One; 2015; 10(2):e0117384. PubMed ID: 25707000 [TBL] [Abstract][Full Text] [Related]
14. Arms are different from legs: mechanics and energetics of human hand-running. Glasheen JW; McMahon TA J Appl Physiol (1985); 1995 Apr; 78(4):1280-7. PubMed ID: 7615434 [TBL] [Abstract][Full Text] [Related]
15. [Physiological analysis of running performance: revision of the hyperbolic model]. Péronnet F; Thibault G J Physiol (Paris); 1987; 82(1):52-60. PubMed ID: 3430366 [TBL] [Abstract][Full Text] [Related]
16. A new model predicting locomotor cost from limb length via force production. Pontzer H J Exp Biol; 2005 Apr; 208(Pt 8):1513-24. PubMed ID: 15802675 [TBL] [Abstract][Full Text] [Related]
17. Effects of the Etna uphill ultramarathon on energy cost and mechanics of running. Lazzer S; Salvadego D; Taboga P; Rejc E; Giovanelli N; di Prampero PE Int J Sports Physiol Perform; 2015 Mar; 10(2):238-47. PubMed ID: 25117400 [TBL] [Abstract][Full Text] [Related]
18. A mathematical theory of running, based on the first law of thermodynamics, and its application to the performance of world-class athletes. Ward-Smith AJ J Biomech; 1985; 18(5):337-49. PubMed ID: 4008504 [TBL] [Abstract][Full Text] [Related]
19. Compliant ankle function results in landing-take off asymmetry in legged locomotion. Maykranz D; Seyfarth A J Theor Biol; 2014 May; 349():44-9. PubMed ID: 24486249 [TBL] [Abstract][Full Text] [Related]
20. The mechanical cost of transport of fast running animals. Fuentes MA J Theor Biol; 2014 Mar; 345():22-31. PubMed ID: 24333209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]