These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9104016)

  • 1. Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus: III. Effect of variations in middle-ear volume.
    Ravicz ME; Rosowski JJ
    J Acoust Soc Am; 1997 Apr; 101(4):2135-47. PubMed ID: 9104016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sound-power collection by the auditory periphery of the mongolian gerbil Meriones unguiculatus. II. External-ear radiation impedance and power collection.
    Ravicz ME; Rosowski JJ; Voigt HF
    J Acoust Soc Am; 1996 May; 99(5):3044-63. PubMed ID: 8642116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus. I: Middle-ear input impedance.
    Ravicz ME; Rosowski JJ; Voigt HF
    J Acoust Soc Am; 1992 Jul; 92(1):157-77. PubMed ID: 1512321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of wide-band middle ear transmission in the Mongolian gerbil.
    Overstreet EH; Ruggero MA
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):261-70. PubMed ID: 11831800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pars flaccida on sound conduction in ears of Mongolian gerbil: acoustic and anatomical measurements.
    Teoh SW; Flandermeyer DT; Rosowski JJ
    Hear Res; 1997 Apr; 106(1-2):39-65. PubMed ID: 9112106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perceptual interaction between carrier periodicity and amplitude-modulation in the gerbil (Meriones unguiculatus).
    Wiegrebe L; Sonnleitner V
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Mar; 193(3):305-12. PubMed ID: 17082963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of middle-ear function in the Mongolian gerbil, a specialized mammalian ear.
    Rosowski JJ; Ravicz ME; Teoh SW; Flandermeyer D
    Audiol Neurootol; 1999; 4(3-4):129-36. PubMed ID: 10187920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function of the mammalian middle ear. II: Inferring function from structure.
    Mason MJ
    J Anat; 2016 Feb; 228(2):300-12. PubMed ID: 26100915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization dominance and the effect of frequency in the Mongolian Gerbil, Meriones unguiculatus.
    Wolf M; Schuchmann M; Wiegrebe L
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Jul; 196(7):463-70. PubMed ID: 20490810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammalian ear specializations in arid habitats: structural and functional evidence from sand cat (Felis margarita).
    Huang GT; Rosowski JJ; Ravicz ME; Peake WT
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Oct; 188(9):663-81. PubMed ID: 12397438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gap detection in Mongolian gerbils (Meriones unguiculatus).
    Wagner E; Klump GM; Hamann I
    Hear Res; 2003 Feb; 176(1-2):11-6. PubMed ID: 12583877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Middle Ear Muscle Reflex in Rat: Developing a Biomarker of Auditory Nerve Degeneration.
    Chertoff ME; Martz A; Sakumura JT; Kamerer AM; Diaz F
    Ear Hear; 2018; 39(3):605-614. PubMed ID: 29189520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Middle-ear development. V: Development of umbo sensitivity in the gerbil.
    Cohen YE; Doan DE; Rubin DM; Saunders JC
    Am J Otolaryngol; 1993; 14(3):191-8. PubMed ID: 8338202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency characteristics of sound transmission in middle ears from Norwegian cattle, and the effect of static pressure differences across the tympanic membrane and the footplate.
    Kringlebotn M
    J Acoust Soc Am; 2000 Mar; 107(3):1442-50. PubMed ID: 10738799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of the acoustic input impedance of cat ears: 10 Hz to 20 kHz.
    Lynch TJ; Peake WT; Rosowski JJ
    J Acoust Soc Am; 1994 Oct; 96(4):2184-209. PubMed ID: 7963032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic mechanisms that determine the ear-canal sound pressures generated by earphones.
    Voss SE; Rosowski JJ; Shera CA; Peake WT
    J Acoust Soc Am; 2000 Mar; 107(3):1548-65. PubMed ID: 10738809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gerbil middle-ear sound transmission from 100 Hz to 60 kHz.
    Ravicz ME; Cooper NP; Rosowski JJ
    J Acoust Soc Am; 2008 Jul; 124(1):363-80. PubMed ID: 18646983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chinchilla middle ear transmission matrix model and middle-ear flexibility.
    Ravicz ME; Rosowski JJ
    J Acoust Soc Am; 2017 May; 141(5):3274. PubMed ID: 28599566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of subtle auditory dysfunctions in young normal-hearing subjects affected by Williams syndrome.
    Paglialonga A; Barozzi S; Brambilla D; Soi D; Cesarani A; Spreafico E; Tognola G
    Int J Pediatr Otorhinolaryngol; 2014 Nov; 78(11):1861-5. PubMed ID: 25193583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normative Wideband Reflectance, Equivalent Admittance at the Tympanic Membrane, and Acoustic Stapedius Reflex Threshold in Adults.
    Feeney MP; Keefe DH; Hunter LL; Fitzpatrick DF; Garinis AC; Putterman DB; McMillan GP
    Ear Hear; 2017; 38(3):e142-e160. PubMed ID: 28045835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.