These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 9104033)
1. Echolocation signals of the greater horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing. Tian B; Schnitzler HU J Acoust Soc Am; 1997 Apr; 101(4):2347-64. PubMed ID: 9104033 [TBL] [Abstract][Full Text] [Related]
3. Evoked potential correlates of echolocation in the mustached bat, Pteronotus p. parnellii. Henson OW; Keating AW; Henson MM Hear Res; 1989 Apr; 38(3):213-9. PubMed ID: 2708164 [TBL] [Abstract][Full Text] [Related]
4. On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude. Hiryu S; Shiori Y; Hosokawa T; Riquimaroux H; Watanabe Y J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Sep; 194(9):841-51. PubMed ID: 18663454 [TBL] [Abstract][Full Text] [Related]
5. Duration-sensitive neurons in the inferior colliculus of horseshoe bats: adaptations for using CF-FM echolocation pulses. Luo F; Metzner W; Wu F; Zhang S; Chen Q J Neurophysiol; 2008 Jan; 99(1):284-96. PubMed ID: 18003879 [TBL] [Abstract][Full Text] [Related]
6. Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency. Metzner W; Zhang S; Smotherman M J Exp Biol; 2002 Jun; 205(Pt 11):1607-16. PubMed ID: 12000805 [TBL] [Abstract][Full Text] [Related]
7. Species-specific control of acoustic gaze by echolocating bats, Rhinolophus ferrumequinum nippon and Pipistrellus abramus, during flight. Yamada Y; Hiryu S; Watanabe Y J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Nov; 202(11):791-801. PubMed ID: 27566319 [TBL] [Abstract][Full Text] [Related]
8. Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone. Hiryu S; Hagino T; Riquimaroux H; Watanabe Y J Acoust Soc Am; 2007 Mar; 121(3):1749-57. PubMed ID: 17407911 [TBL] [Abstract][Full Text] [Related]
9. Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight. Matsuta N; Hiryu S; Fujioka E; Yamada Y; Riquimaroux H; Watanabe Y J Exp Biol; 2013 Apr; 216(Pt 7):1210-8. PubMed ID: 23487269 [TBL] [Abstract][Full Text] [Related]
10. Echolocation behavior of the Japanese horseshoe bat in pursuit of fluttering prey. Mantani S; Hiryu S; Fujioka E; Matsuta N; Riquimaroux H; Watanabe Y J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Oct; 198(10):741-51. PubMed ID: 22777677 [TBL] [Abstract][Full Text] [Related]
11. The influence of flight speed on the ranging performance of bats using frequency modulated echolocation pulses. Boonman AM; Parsons S; Jones G J Acoust Soc Am; 2003 Jan; 113(1):617-28. PubMed ID: 12558297 [TBL] [Abstract][Full Text] [Related]
12. Effects of echo intensity on Doppler-shift compensation behavior in horseshoe bats. Smotherman M; Metzner W J Neurophysiol; 2003 Feb; 89(2):814-21. PubMed ID: 12574459 [TBL] [Abstract][Full Text] [Related]
13. Evolution of high duty cycle echolocation in bats. Fenton MB; Faure PA; Ratcliffe JM J Exp Biol; 2012 Sep; 215(Pt 17):2935-44. PubMed ID: 22875762 [TBL] [Abstract][Full Text] [Related]
14. Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight. Hiryu S; Katsura K; Lin LK; Riquimaroux H; Watanabe Y J Acoust Soc Am; 2005 Dec; 118(6):3927-33. PubMed ID: 16419835 [TBL] [Abstract][Full Text] [Related]
15. Facilitatory and inhibitory frequency tuning of combination-sensitive neurons in the primary auditory cortex of mustached bats. Kanwal JS; Fitzpatrick DC; Suga N J Neurophysiol; 1999 Nov; 82(5):2327-45. PubMed ID: 10561409 [TBL] [Abstract][Full Text] [Related]
16. Development of echolocation calls in the mustached bat, Pteronotus parnellii. Vater M; Kössl M; Foeller E; Coro F; Mora E; Russell IJ J Neurophysiol; 2003 Oct; 90(4):2274-90. PubMed ID: 14534267 [TBL] [Abstract][Full Text] [Related]
17. Vocalization of echolocation-like pulses for interindividual interaction in horseshoe bats (Rhinolophus ferrumequinum). Kobayasi KI; Hiryu S; Shimozawa R; Riquimaroux H J Acoust Soc Am; 2012 Nov; 132(5):EL417-22. PubMed ID: 23145704 [TBL] [Abstract][Full Text] [Related]
18. [Physiologic mechanisms of use of the Doppler effect in echolocation by Rhinolophus ferrumequinum bats]. Konstantinov AI; Makarov AK; Sokolov BV; Sanotskaia NN Zh Evol Biokhim Fiziol; 1976; 12(5):466-72. PubMed ID: 983573 [TBL] [Abstract][Full Text] [Related]
19. Auditory-feedback control of temporal call patterns in echolocating horseshoe bats. Smotherman M; Metzner W J Neurophysiol; 2005 Mar; 93(3):1295-303. PubMed ID: 15496485 [TBL] [Abstract][Full Text] [Related]
20. Reduction of emission level in approach signals of greater mouse-eared bats (Myotis myotis): No evidence for a closed loop control system for intensity compensation. Budenz T; Denzinger A; Schnitzler HU PLoS One; 2018; 13(3):e0194600. PubMed ID: 29543882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]