These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9104706)

  • 21. Bone-particle-impregnated bone cement: an in vitro study.
    Liu YK; Park JB; Njus GO; Stienstra D
    J Biomed Mater Res; 1987 Feb; 21(2):247-61. PubMed ID: 3818684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of mixing technique on some properties of PMMA bone cement.
    Eyerer P; Jin R
    J Biomed Mater Res; 1986 Oct; 20(8):1057-94. PubMed ID: 3782171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effect of the mixing conditions of PMMA bone cements on their properties. 2: Analysis of the mixing procedure].
    Eyerer P; Jin R
    Biomed Tech (Berl); 1986; 31(1-2):11-8. PubMed ID: 3955163
    [No Abstract]   [Full Text] [Related]  

  • 24. Effect of two variables on the fatigue performance of acrylic bone cement: mixing method and viscosity.
    Lewis G
    Biomed Mater Eng; 1999; 9(4):197-207. PubMed ID: 10674174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rheological properties of PMMA bone cements during curing.
    Farrar DF; Rose J
    Biomaterials; 2001 Nov; 22(22):3005-13. PubMed ID: 11575475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The viscosity of acrylic bone cements.
    Krause WR; Miller J; Ng P
    J Biomed Mater Res; 1982 May; 16(3):219-43. PubMed ID: 7085686
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of test specimen cross-sectional shape on the in vitro fatigue life of acrylic bone cement.
    Lewis G; Janna S
    Biomaterials; 2003 Oct; 24(23):4315-21. PubMed ID: 12853262
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved fatigue life of acrylic bone cements reinforced with zirconia fibers.
    Kane RJ; Yue W; Mason JJ; Roeder RK
    J Mech Behav Biomed Mater; 2010 Oct; 3(7):504-11. PubMed ID: 20696415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The apparent fracture toughness of acrylic bone cement: effect of three variables.
    Lewis G; Nyman J; Trieu HH
    Biomaterials; 1998 May; 19(10):961-7. PubMed ID: 9690838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A fractographic analysis of in vivo poly(methyl methacrylate) bone cement failure mechanisms.
    Topoleski LD; Ducheyne P; Cuckler JM
    J Biomed Mater Res; 1990 Feb; 24(2):135-54. PubMed ID: 2329111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation into the release of bioactive recombinant human growth hormone from normal and low-viscosity poly(methylmethacrylate) bone cements.
    Goodwin CJ; Braden M; Downes S; Marshall NJ
    J Biomed Mater Res; 1997 Jan; 34(1):47-55. PubMed ID: 8978652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fatigue properties and stem subsidence in wire coil reinforced PMMA bone cement: a preliminary in vitro study.
    Kim JK; Park JB
    Biomed Mater Eng; 1996; 6(6):453-62. PubMed ID: 9138655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of mixing on gentamicin release from polymethylmethacrylate bone cements.
    Neut D; van de Belt H; van Horn JR; van der Mei HC; Busscher HJ
    Acta Orthop Scand; 2003 Dec; 74(6):670-6. PubMed ID: 14763697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of cross-linking agents on acrylic bone cements containing radiopacifiers.
    De S; Vazquez B
    Biomaterials; 2001 Aug; 22(15):2177-81. PubMed ID: 11432598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Creep characteristics of hand- and vacuum-mixed acrylic bone cement at elevated stress levels.
    Norman TL; Kish V; Blaha JD; Gruen TA; Hustosky K
    J Biomed Mater Res; 1995 Apr; 29(4):495-501. PubMed ID: 7622534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Innovations in acrylic bone cement and application equipment.
    Kindt-Larsen T; Smith DB; Jensen JS
    J Appl Biomater; 1995; 6(1):75-83. PubMed ID: 7703541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of centrifugation and titanium fiber reinforcement on fatigue failure mechanisms in poly(methyl methacrylate) bone cement.
    Topoleski LD; Ducheyne P; Cuckler JM
    J Biomed Mater Res; 1995 Mar; 29(3):299-307. PubMed ID: 7615581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite element modelling of polymethylmethacrylate flow through cancellous bone.
    Beaudoin AJ; Mihalko WM; Krause WR
    J Biomech; 1991; 24(2):127-36. PubMed ID: 2037612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compressive and bone-bonding strength of hydroxyapatite thermal decomposition product implanted in the femur of rabbit as a bioactive ceramic bone cement.
    Takahashi A; Koshino T
    Biomaterials; 1995 Aug; 16(12):937-43. PubMed ID: 8562783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.