These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9104868)

  • 21. Effect of viscosity on mechanics of single, skinned fibers from rabbit psoas muscle.
    Chase PB; Denkinger TM; Kushmerick MJ
    Biophys J; 1998 Mar; 74(3):1428-38. PubMed ID: 9512039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endothermic force generation, temperature-jump experiments and effects of increased [MgADP] in rabbit psoas muscle fibres.
    Coupland ME; Pinniger GJ; Ranatunga KW
    J Physiol; 2005 Sep; 567(Pt 2):471-92. PubMed ID: 15975981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exchange of ATP for ADP on high-force cross-bridges of skinned rabbit muscle fibers.
    Seow CY; Ford LE
    Biophys J; 1997 Jun; 72(6):2719-35. PubMed ID: 9168047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. X-ray diffraction analysis of the effects of myosin regulatory light chain phosphorylation and butanedione monoxime on skinned skeletal muscle fibers.
    Yamaguchi M; Kimura M; Li ZB; Ohno T; Takemori S; Hoh JF; Yagi N
    Am J Physiol Cell Physiol; 2016 Apr; 310(8):C692-700. PubMed ID: 26911280
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence polarization of skeletal muscle fibers labeled with rhodamine isomers on the myosin heavy chain.
    Berger CL; Craik JS; Trentham DR; Corrie JE; Goldman YE
    Biophys J; 1996 Dec; 71(6):3330-43. PubMed ID: 8968602
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Faster force transient kinetics at submaximal Ca2+ activation of skinned psoas fibers from rabbit.
    Martyn DA; Chase PB
    Biophys J; 1995 Jan; 68(1):235-42. PubMed ID: 7711246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elementary steps of contraction probed by sinusoidal analysis technique in rabbit psoas fibers.
    Kawai M; Zhao Y; Halvorson HR
    Adv Exp Med Biol; 1993; 332():567-77; discussion 577-80. PubMed ID: 8109368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Myosin regulatory light chain phosphorylation and strain modulate adenosine diphosphate release from smooth muscle Myosin.
    Khromov AS; Webb MR; Ferenczi MA; Trentham DR; Somlyo AP; Somlyo AV
    Biophys J; 2004 Apr; 86(4):2318-28. PubMed ID: 15041670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contractility of single myofibrils of rabbit skeletal muscle studied at various MgATP concentrations.
    Wakayama J; Yamada T
    Jpn J Physiol; 2000 Oct; 50(5):533-42. PubMed ID: 11120920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The direct molecular effects of fatigue and myosin regulatory light chain phosphorylation on the actomyosin contractile apparatus.
    Greenberg MJ; Mealy TR; Jones M; Szczesna-Cordary D; Moore JR
    Am J Physiol Regul Integr Comp Physiol; 2010 Apr; 298(4):R989-96. PubMed ID: 20089714
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of physiological ADP concentrations on contraction of single skinned fibers from rabbit fast and slow muscles.
    Chase PB; Kushmerick MJ
    Am J Physiol; 1995 Feb; 268(2 Pt 1):C480-9. PubMed ID: 7864087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulatory light chain phosphorylation increases eccentric contraction-induced injury in skinned fast-twitch fibers.
    Childers MK; McDonald KS
    Muscle Nerve; 2004 Feb; 29(2):313-7. PubMed ID: 14755499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle.
    Sahlin K; Gorski J; Edström L
    Am J Physiol; 1990 Sep; 259(3 Pt 1):C409-12. PubMed ID: 2399963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Length-dependence of actin-myosin interaction in skinned cardiac muscle fibers in rigor.
    Fuchs F; Wang YP
    J Mol Cell Cardiol; 1997 Dec; 29(12):3267-74. PubMed ID: 9441832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorylation of the regulatory light chains of myosin affects Ca2+ sensitivity of skeletal muscle contraction.
    Szczesna D; Zhao J; Jones M; Zhi G; Stull J; Potter JD
    J Appl Physiol (1985); 2002 Apr; 92(4):1661-70. PubMed ID: 11896035
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strain sensitivity and turnover rate of low force cross-bridges in contracting skeletal muscle fibers in the presence of phosphate.
    Iwamoto H
    Biophys J; 1995 Jan; 68(1):243-50. PubMed ID: 7711247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Approximating the isometric force-calcium relation of intact frog muscle using skinned fibers.
    Maughan DW; Molloy JE; Brotto MA; Godt RE
    Biophys J; 1995 Oct; 69(4):1484-90. PubMed ID: 8534819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of inorganic phosphate and pH on ATP utilization in fast and slow skeletal muscle fibers.
    Potma EJ; van Graas IA; Stienen GJ
    Biophys J; 1995 Dec; 69(6):2580-9. PubMed ID: 8599665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers. I. Proportionality between the lattice spacing and the fiber width.
    Kawai M; Wray JS; Zhao Y
    Biophys J; 1993 Jan; 64(1):187-96. PubMed ID: 7679296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlation between mechanical and enzymatic events in contracting skeletal muscle fiber.
    Shepard A; Borejdo J
    Biochemistry; 2004 Mar; 43(10):2804-11. PubMed ID: 15005615
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.