These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
677 related articles for article (PubMed ID: 9105697)
21. The involvement of L-type Ca(2+) channels in the relaxant effects of the ATP-sensitive K(+) channel opener ZD6169 on pig urethral smooth muscle. Teramoto N; Yunoki T; Ikawa S; Takano N; Tanaka K; Seki N; Naito S; Ito Y Br J Pharmacol; 2001 Dec; 134(7):1505-15. PubMed ID: 11724757 [TBL] [Abstract][Full Text] [Related]
22. Blocking actions of glibenclamide on ATP-sensitive K+ channels in pig urethral myocytes. Teramoto N; Zhu HL; Ito Y J Pharm Pharmacol; 2004 Mar; 56(3):395-9. PubMed ID: 15025866 [TBL] [Abstract][Full Text] [Related]
23. Modification of ATP-sensitive K+ channels by proteolysis in smooth muscle cells from pig urethra. Teramoto N; Tomoda T; Yunoki T; Brading AF; Ito Y Life Sci; 2002 Dec; 72(4-5):475-85. PubMed ID: 12467888 [TBL] [Abstract][Full Text] [Related]
24. Levcromakalim may induce a voltage-independent K-current in rat portal veins by modifying the gating properties of the delayed rectifier. Edwards G; Ibbotson T; Weston AH Br J Pharmacol; 1993 Nov; 110(3):1037-48. PubMed ID: 8298792 [TBL] [Abstract][Full Text] [Related]
25. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder. Bonev AD; Nelson MT Am J Physiol; 1993 May; 264(5 Pt 1):C1190-200. PubMed ID: 8498480 [TBL] [Abstract][Full Text] [Related]
26. Properties of the ATP-sensitive K+ current activated by levcromakalim in isolated pulmonary arterial myocytes. Clapp LH; Gurney AM; Standen NB; Langton PD J Membr Biol; 1994 Jun; 140(3):205-13. PubMed ID: 7932655 [TBL] [Abstract][Full Text] [Related]
27. Effects of BRL55834 in rat portal vein and bovine trachea: evidence for the induction of a glibenclamide-resistant, ATP-sensitive potassium current. Edwards G; Schneider J; Niederste-Hollenberg A; Noack T; Weston AH Br J Pharmacol; 1995 Jul; 115(6):1027-37. PubMed ID: 7582499 [TBL] [Abstract][Full Text] [Related]
28. Potassium channel openers act through an activation of ATP-sensitive K+ channels in guinea-pig cardiac myocytes. Escande D; Thuringer D; Le Guern S; Courteix J; Laville M; Cavero I Pflugers Arch; 1989 Sep; 414(6):669-75. PubMed ID: 2510125 [TBL] [Abstract][Full Text] [Related]
29. Glyburide-sensitive K+ channels in cultured rat hippocampal neurons: activation by cromakalim and energy-depleting conditions. Politi DM; Rogawski MA Mol Pharmacol; 1991 Aug; 40(2):308-15. PubMed ID: 1715018 [TBL] [Abstract][Full Text] [Related]
30. K channel activation by nucleotide diphosphates and its inhibition by glibenclamide in vascular smooth muscle cells. Beech DJ; Zhang H; Nakao K; Bolton TB Br J Pharmacol; 1993 Oct; 110(2):573-82. PubMed ID: 8242232 [TBL] [Abstract][Full Text] [Related]
31. Glibenclamide-sensitive K+ channels underlying levcromakalim-induced relaxation in pig urethra. Teramoto N; Brading AF; Ito Y Eur J Pharmacol; 1999 Jan; 365(2-3):291-300. PubMed ID: 9988114 [TBL] [Abstract][Full Text] [Related]
32. Comparative studies on the relaxing action of several adenosine 5'-triphosphate-sensitive K+ channel openers in pig urethra. Teramoto N; Ito Y J Smooth Muscle Res; 1999 Feb; 35(1):11-22. PubMed ID: 10379926 [TBL] [Abstract][Full Text] [Related]
33. Effects of the BKCa channel activator, NS1619, on rat cerebral artery smooth muscle. Holland M; Langton PD; Standen NB; Boyle JP Br J Pharmacol; 1996 Jan; 117(1):119-29. PubMed ID: 8825352 [TBL] [Abstract][Full Text] [Related]
34. An ATP-sensitive potassium conductance in rabbit arterial endothelial cells. Katnik C; Adams DJ J Physiol; 1995 Jun; 485 ( Pt 3)(Pt 3):595-606. PubMed ID: 7562603 [TBL] [Abstract][Full Text] [Related]
35. Basal activation of ATP-sensitive potassium channels in murine colonic smooth muscle cell. Koh SD; Bradley KK; Rae MG; Keef KD; Horowitz B; Sanders KM Biophys J; 1998 Oct; 75(4):1793-800. PubMed ID: 9746521 [TBL] [Abstract][Full Text] [Related]
36. A role for a glibenclamide-sensitive, relatively ATP-insensitive K+ current in regulating membrane potential and current in rat aorta. Mishra SK; Aaronson PI Cardiovasc Res; 1999 Nov; 44(2):429-35. PubMed ID: 10690319 [TBL] [Abstract][Full Text] [Related]
37. Activation of ATP-dependent K+ channels by metabolic poisoning in adult mouse skeletal muscle: role of intracellular Mg(2+) and pH. Allard B; Lazdunski M; Rougier O J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):283-96. PubMed ID: 7666359 [TBL] [Abstract][Full Text] [Related]
38. Modulation of K+ channels by intracellular ATP in human neocortical neurons. Jiang C; Haddad GG J Neurophysiol; 1997 Jan; 77(1):93-102. PubMed ID: 9120601 [TBL] [Abstract][Full Text] [Related]
39. Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells. Han X; Light PE; Giles WR; French RJ J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):337-50. PubMed ID: 8821133 [TBL] [Abstract][Full Text] [Related]
40. Characterization of ATP-sensitive potassium channels in freshly dissociated rabbit aortic endothelial cells. Katnik C; Adams DJ Am J Physiol; 1997 May; 272(5 Pt 2):H2507-11. PubMed ID: 9176323 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]