These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 9105711)
21. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed. Pimentel AM; Costa CA; Carvalho LC; Brandão RM; Rangel BM; Tano T; Soares de Moura R; Resende AC Vascul Pharmacol; 2007 May; 46(5):353-9. PubMed ID: 17258511 [TBL] [Abstract][Full Text] [Related]
22. Role of nitric oxide and Ca++-dependent K+ channels in mediating heterogeneous microvascular responses to acetylcholine in different vascular beds. Clark SG; Fuchs LC J Pharmacol Exp Ther; 1997 Sep; 282(3):1473-9. PubMed ID: 9316861 [TBL] [Abstract][Full Text] [Related]
23. Endothelium-dependent vasorelaxation independent of nitric oxide and K(+) release in isolated renal arteries of rats. Jiang F; Dusting GJ Br J Pharmacol; 2001 Apr; 132(7):1558-64. PubMed ID: 11264250 [TBL] [Abstract][Full Text] [Related]
24. Characterization and modulation of EDHF-mediated relaxations in the rat isolated superior mesenteric arterial bed. McCulloch AI; Bottrill FE; Randall MD; Hiley CR Br J Pharmacol; 1997 Apr; 120(8):1431-8. PubMed ID: 9113362 [TBL] [Abstract][Full Text] [Related]
25. Mechanisms underlying endothelium-dependent, nitric oxide- and prostanoid-independent relaxation in monkey and dog coronary arteries. Fujioka H; Ayajiki K; Shinozaki K; Toda N; Okamura T Naunyn Schmiedebergs Arch Pharmacol; 2002 Nov; 366(5):488-95. PubMed ID: 12382080 [TBL] [Abstract][Full Text] [Related]
26. Role of potassium channels in the nitrergic nerve stimulation-induced vasodilatation in the guinea-pig isolated basilar artery. Jiang F; Li CG; Rand MJ Br J Pharmacol; 1998 Jan; 123(1):106-12. PubMed ID: 9484860 [TBL] [Abstract][Full Text] [Related]
27. Comparison of the pharmacological properties of EDHF-mediated vasorelaxation in guinea-pig cerebral and mesenteric resistance vessels. Dong H; Jiang Y; Cole WC; Triggle CR Br J Pharmacol; 2000 Aug; 130(8):1983-91. PubMed ID: 10952691 [TBL] [Abstract][Full Text] [Related]
28. Differential actions of anandamide, potassium ions and endothelium-derived hyperpolarizing factor in guinea-pig basilar artery. Zygmunt PM; Sørgård M; Petersson J; Johansson R; Högestätt ED Naunyn Schmiedebergs Arch Pharmacol; 2000 May; 361(5):535-42. PubMed ID: 10832608 [TBL] [Abstract][Full Text] [Related]
29. Effects of inhibitors of small- and intermediate-conductance calcium-activated potassium channels, inwardly-rectifying potassium channels and Na(+)/K(+) ATPase on EDHF relaxations in the rat hepatic artery. Andersson DA; Zygmunt PM; Movahed P; Andersson TL; Högestätt ED Br J Pharmacol; 2000 Apr; 129(7):1490-6. PubMed ID: 10742306 [TBL] [Abstract][Full Text] [Related]
30. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine. Tanaka Y; Otsuka A; Tanaka H; Shigenobu K Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734 [TBL] [Abstract][Full Text] [Related]
31. Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance. García-Pascual A; Labadía A; Jimenez E; Costa G Br J Pharmacol; 1995 Aug; 115(7):1221-30. PubMed ID: 7582549 [TBL] [Abstract][Full Text] [Related]
32. Effects of cytochrome P450 inhibitors on EDHF-mediated relaxation in the rat hepatic artery. Zygmunt PM; Edwards G; Weston AH; Davis SC; Högestätt ED Br J Pharmacol; 1996 Jul; 118(5):1147-52. PubMed ID: 8818337 [TBL] [Abstract][Full Text] [Related]
33. Endothelial mediators of the acetylcholine-induced relaxation of the rat femoral artery. Leung HS; Leung FP; Yao X; Ko WH; Chen ZY; Vanhoutte PM; Huang Y Vascul Pharmacol; 2006 May; 44(5):299-308. PubMed ID: 16527547 [TBL] [Abstract][Full Text] [Related]
34. Evidence that NO acts as a redundant NANC inhibitory neurotransmitter in the guinea-pig isolated taenia coli. Selemidis S; Satchell DG; Cocks TM Br J Pharmacol; 1997 Jun; 121(3):604-11. PubMed ID: 9179406 [TBL] [Abstract][Full Text] [Related]
35. Reduced effects of endothelium-derived hyperpolarizing factor in ocular ciliary arteries from spontaneous hypertensive rats. Dong Y; Watabe H; Cui J; Abe S; Sato N; Ishikawa H; Yoshitomi T Exp Eye Res; 2010 Feb; 90(2):324-9. PubMed ID: 19941853 [TBL] [Abstract][Full Text] [Related]
36. Role of EDHF in the vasodilatory effect of loop diuretics in guinea-pig mesenteric resistance arteries. Pourageaud F; Bappel-Gozalbes C; Marthan R; Freslon JL Br J Pharmacol; 2000 Nov; 131(6):1211-9. PubMed ID: 11082130 [TBL] [Abstract][Full Text] [Related]
37. Evidence for an endothelium-derived hyperpolarizing factor in the superior mesenteric artery from rats with cirrhosis. Barriere E; Tazi KA; Rona JP; Pessione F; Heller J; Lebrec D; Moreau R Hepatology; 2000 Nov; 32(5):935-41. PubMed ID: 11050042 [TBL] [Abstract][Full Text] [Related]
38. The contribution of d-tubocurarine-sensitive and apamin-sensitive K-channels to EDHF-mediated relaxation of mesenteric arteries from eNOS-/- mice. Chen X; Li Y; Hollenberg M; Triggle CR; Ding H J Cardiovasc Pharmacol; 2012 May; 59(5):413-25. PubMed ID: 22217882 [TBL] [Abstract][Full Text] [Related]
39. The endothelium-derived hyperpolarising factor (EDHF) in isolated bovine choroidal arteries. Delaey C; Boussery K; Breyne J; Vanheel B; Van de Voorde J Exp Eye Res; 2007 Jun; 84(6):1067-73. PubMed ID: 17418119 [TBL] [Abstract][Full Text] [Related]
40. Endothelial potassium channels, endothelium-dependent hyperpolarization and the regulation of vascular tone in health and disease. Coleman HA; Tare M; Parkington HC Clin Exp Pharmacol Physiol; 2004 Sep; 31(9):641-9. PubMed ID: 15479173 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]