These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 9106186)

  • 1. Engineers and microbiologists: a future together in bioremediation.
    Maymó-Gatell X; Schraa G
    Microbiologia; 1997 Mar; 13(1):85-7. PubMed ID: 9106186
    [No Abstract]   [Full Text] [Related]  

  • 2. In situ bioremediation of monoaromatic pollutants in groundwater: a review.
    Farhadian M; Vachelard C; Duchez D; Larroche C
    Bioresour Technol; 2008 Sep; 99(13):5296-308. PubMed ID: 18054222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocatalytic degradation of pollutants.
    Parales RE; Haddock JD
    Curr Opin Biotechnol; 2004 Aug; 15(4):374-9. PubMed ID: 15296933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioremediation: environmental clean-up through pathway engineering.
    Singh S; Kang SH; Mulchandani A; Chen W
    Curr Opin Biotechnol; 2008 Oct; 19(5):437-44. PubMed ID: 18760355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Selection and use of microorganisms for metabolizing environmental chemicals with chlorinated aromatics as an example].
    Reineke W
    Schriftenr Ver Wasser Boden Lufthyg; 1988; 78():225-49. PubMed ID: 3074481
    [No Abstract]   [Full Text] [Related]  

  • 6. The current and future applications of microorganism in the bioremediation of cyanide contamination.
    Baxter J; Cummings SP
    Antonie Van Leeuwenhoek; 2006 Jul; 90(1):1-17. PubMed ID: 16683094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioremediation. Anaerobes to the rescue.
    Lovley DR
    Science; 2001 Aug; 293(5534):1444-6. PubMed ID: 11520973
    [No Abstract]   [Full Text] [Related]  

  • 8. Enhancement of metal bioremediation by use of microbial surfactants.
    Singh P; Cameotra SS
    Biochem Biophys Res Commun; 2004 Jun; 319(2):291-7. PubMed ID: 15178405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacteria to the rescue.
    Seshadri R; Heidelberg J
    Nat Biotechnol; 2005 Oct; 23(10):1236-7. PubMed ID: 16211064
    [No Abstract]   [Full Text] [Related]  

  • 10. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation.
    Stroud JL; Paton GI; Semple KT
    J Appl Microbiol; 2007 May; 102(5):1239-53. PubMed ID: 17448159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic pathway engineering to enhance aerobic degradation of chlorinated ethenes and to reduce their toxicity by cloning a novel glutathione S-transferase, an evolved toluene o-monooxygenase, and gamma-glutamylcysteine synthetase.
    Rui L; Kwon YM; Reardon KF; Wood TK
    Environ Microbiol; 2004 May; 6(5):491-500. PubMed ID: 15049922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The present and future of infections in the domestic environment in Italy].
    Comodo N; Nastasi A; Bonaccorsi G; Barbuti S; Lopalco PL; Bonanni P; Poli A; Paladini A; Peracca L; Bussotti A; Liverani L
    Ann Ig; 2000; 12(3):233-7. PubMed ID: 10953385
    [No Abstract]   [Full Text] [Related]  

  • 13. [Topical problems in the study of the influence of environmental factors on the health of the population].
    Sidorenko GI; Rumiantsev GI; Novikov SM
    Gig Sanit; 1998; (4):3-8. PubMed ID: 9721494
    [No Abstract]   [Full Text] [Related]  

  • 14. Bioremediation of chromium contaminated soil by Pseudomonas fluorescens and indigenous microorganisms.
    Jeyalakshmi D; Kanmani S
    J Environ Sci Eng; 2008 Jan; 50(1):1-6. PubMed ID: 19192919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applicability of competitive and noncompetitive kinetics to the reductive dechlorination of chlorinated ethenes.
    Garant H; Lynd L
    Biotechnol Bioeng; 1998 Mar; 57(6):751-5. PubMed ID: 10099255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ralstonia pickettii in environmental biotechnology: potential and applications.
    Ryan MP; Pembroke JT; Adley CC
    J Appl Microbiol; 2007 Oct; 103(4):754-64. PubMed ID: 17897177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverse mechanistic approaches to difficult chemical transformations: microbial dehalogenation of chlorinated aromatic compounds.
    Copley SD
    Chem Biol; 1997 Mar; 4(3):169-74. PubMed ID: 9115409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil.
    Lin X; Li X; Sun T; Li P; Zhou Q; Sun L; Hu X
    Bull Environ Contam Toxicol; 2009 Oct; 83(4):542-7. PubMed ID: 19633978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for bioremediation of polychlorinated biphenyls.
    Ohtsubo Y; Kudo T; Tsuda M; Nagata Y
    Appl Microbiol Biotechnol; 2004 Aug; 65(3):250-8. PubMed ID: 15248039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1.
    Kube M; Beck A; Zinder SH; Kuhl H; Reinhardt R; Adrian L
    Nat Biotechnol; 2005 Oct; 23(10):1269-73. PubMed ID: 16116419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.