These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 9106211)
1. Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements. Miwa Y; Nagura K; Eguchi S; Fukuda H; Deutscher J; Fujita Y Mol Microbiol; 1997 Mar; 23(6):1203-13. PubMed ID: 9106211 [TBL] [Abstract][Full Text] [Related]
2. Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Fujita Y; Miwa Y; Galinier A; Deutscher J Mol Microbiol; 1995 Sep; 17(5):953-60. PubMed ID: 8596444 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon. Galinier A; Deutscher J; Martin-Verstraete I J Mol Biol; 1999 Feb; 286(2):307-14. PubMed ID: 9973552 [TBL] [Abstract][Full Text] [Related]
5. Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr. Reizer J; Bergstedt U; Galinier A; Küster E; Saier MH; Hillen W; Steinmetz M; Deutscher J J Bacteriol; 1996 Sep; 178(18):5480-6. PubMed ID: 8808939 [TBL] [Abstract][Full Text] [Related]
6. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089 [TBL] [Abstract][Full Text] [Related]
7. Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. Gösseringer R; Küster E; Galinier A; Deutscher J; Hillen W J Mol Biol; 1997 Mar; 266(4):665-76. PubMed ID: 9102460 [TBL] [Abstract][Full Text] [Related]
8. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression. Darbon E; Servant P; Poncet S; Deutscher J Mol Microbiol; 2002 Feb; 43(4):1039-52. PubMed ID: 11929549 [TBL] [Abstract][Full Text] [Related]
10. Determination of the cis sequence involved in catabolite repression of the Bacillus subtilis gnt operon; implication of a consensus sequence in catabolite repression in the genus Bacillus. Miwa Y; Fujita Y Nucleic Acids Res; 1990 Dec; 18(23):7049-53. PubMed ID: 2124676 [TBL] [Abstract][Full Text] [Related]
11. Involvement of two distinct catabolite-responsive elements in catabolite repression of the Bacillus subtilis myo-inositol (iol) operon. Miwa Y; Fujita Y J Bacteriol; 2001 Oct; 183(20):5877-84. PubMed ID: 11566986 [TBL] [Abstract][Full Text] [Related]
12. Carbon catabolite control of the metabolic network in Bacillus subtilis. Fujita Y Biosci Biotechnol Biochem; 2009 Feb; 73(2):245-59. PubMed ID: 19202299 [TBL] [Abstract][Full Text] [Related]
13. CcpA-mediated catabolite activation of the Bacillus subtilis ilv-leu operon and its negation by either CodY- or TnrA-mediated negative regulation. Fujita Y; Satomura T; Tojo S; Hirooka K J Bacteriol; 2014 Nov; 196(21):3793-806. PubMed ID: 25157083 [TBL] [Abstract][Full Text] [Related]
15. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. Martin-Verstraete I; Stülke J; Klier A; Rapoport G J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486 [TBL] [Abstract][Full Text] [Related]
16. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. Wray LV; Pettengill FK; Fisher SH J Bacteriol; 1994 Apr; 176(7):1894-902. PubMed ID: 8144455 [TBL] [Abstract][Full Text] [Related]
17. Bacillus subtilis GntR regulation modified to devise artificial transient induction systems. Majidian P; Kuse J; Tanaka K; Najafi H; Zeinalabedini M; Takenaka S; Yoshida KI J Gen Appl Microbiol; 2017 Jan; 62(6):277-285. PubMed ID: 27829583 [TBL] [Abstract][Full Text] [Related]
18. Catabolite repression of the Bacillus subtilis gnt operon mediated by the CcpA protein. Fujita Y; Miwa Y J Bacteriol; 1994 Jan; 176(2):511-3. PubMed ID: 8288545 [TBL] [Abstract][Full Text] [Related]
19. Catabolite repression mediated by the catabolite control protein CcpA in Staphylococcus xylosus. Egeter O; Brückner R Mol Microbiol; 1996 Aug; 21(4):739-49. PubMed ID: 8878037 [TBL] [Abstract][Full Text] [Related]
20. Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis. Krüger S; Hecker M J Bacteriol; 1995 Oct; 177(19):5590-7. PubMed ID: 7559347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]