BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 9106501)

  • 1. Physiological thiol compounds exert pro- and anti-oxidant effects, respectively, on iron- and copper-dependent oxidation of human low-density lipoprotein.
    Lynch SM; Frei B
    Biochim Biophys Acta; 1997 Apr; 1345(2):215-21. PubMed ID: 9106501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma thiols inhibit hemin-dependent oxidation of human low-density lipoprotein.
    Lynch SM; Campione AL; Moore MK
    Biochim Biophys Acta; 2000 May; 1485(1):11-22. PubMed ID: 10802245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of low density lipoprotein by thiols: superoxide-dependent and -independent mechanisms.
    Heinecke JW; Kawamura M; Suzuki L; Chait A
    J Lipid Res; 1993 Dec; 34(12):2051-61. PubMed ID: 8301226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homocysteine strongly enhances metal-catalyzed LDL oxidation in the presence of cystine and cysteine.
    Pfanzagl B; Tribl F; Koller E; Möslinger T
    Atherosclerosis; 2003 May; 168(1):39-48. PubMed ID: 12732385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiol chelation of Cu2+ by dihydrolipoic acid prevents human low density lipoprotein peroxidation.
    Lodge JK; Traber MG; Packer L
    Free Radic Biol Med; 1998 Aug; 25(3):287-97. PubMed ID: 9680174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of copper, but not iron, by human low density lipoprotein (LDL). Implications for metal ion-dependent oxidative modification of LDL.
    Lynch SM; Frei B
    J Biol Chem; 1995 Mar; 270(10):5158-63. PubMed ID: 7890625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper-mediated LDL oxidation by homocysteine and related compounds depends largely on copper ligation.
    Nakano E; Williamson MP; Williams NH; Powers HJ
    Biochim Biophys Acta; 2004 Jan; 1688(1):33-42. PubMed ID: 14732479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cys-His proteases are among the wired proteins of the cell.
    Lockwood TD
    Arch Biochem Biophys; 2004 Dec; 432(1):12-24. PubMed ID: 15519292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms by which cysteine can inhibit or promote the oxidation of low density lipoprotein by copper.
    Patterson RA; Lamb DJ; Leake DS
    Atherosclerosis; 2003 Jul; 169(1):87-94. PubMed ID: 12860254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of medium components on Cu(2+)-dependent oxidation of low-density lipoproteins and its sensitivity to superoxide dismutase.
    Thomas CE
    Biochim Biophys Acta; 1992 Sep; 1128(1):50-7. PubMed ID: 1390878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of age and hyperhomocysteinemia on the redox forms of plasma thiols.
    Di Giuseppe D; Frosali S; Priora R; Di Simplicio FC; Buonocore G; Cellesi C; Capecchi PL; Pasini FL; Lazzerini PE; Jakubowski H; Di Simplicio P
    J Lab Clin Med; 2004 Nov; 144(5):235-45. PubMed ID: 15570241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting S-homocysteinylation of LDL apoprotein B.
    Zinellu A; Zinellu E; Sotgia S; Formato M; Cherchi GM; Deiana L; Carru C
    Clin Chem; 2006 Nov; 52(11):2054-9. PubMed ID: 16990421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human (THP-1) macrophages oxidize LDL by a thiol-dependent mechanism.
    Graham A; Wood JL; O'Leary VJ; Stone D
    Free Radic Res; 1994 Oct; 21(5):295-308. PubMed ID: 7842139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Thiol peroxidase activities in rat blood plasma determined with hydrogen peroxide and 5,5`-dithio-bis(2-nitrobenzoic acid)].
    Razygraev AV; Taborskaya KI; Petrosyan MA; Tumasova ZhN
    Biomed Khim; 2016 May; 62(4):431-8. PubMed ID: 27562997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of copper- and iron-dependent oxidative modification of human low density lipoprotein.
    Lynch SM; Frei B
    J Lipid Res; 1993 Oct; 34(10):1745-53. PubMed ID: 8245725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of low-density lipoprotein by thiol compounds leads to its recognition by the acetyl LDL receptor.
    Parthasarathy S
    Biochim Biophys Acta; 1987 Feb; 917(2):337-40. PubMed ID: 3801507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human (THP-1) macrophages oxidize LDL by a thiol-dependent mechanism.
    Graham A; Wood JL; O'Leary VJ; Stone D
    Free Radic Res; 1996 Aug; 25(2):181-92. PubMed ID: 8885336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative roles of albumin and ceruloplasmin in the formation of homocystine, homocysteine-cysteine-mixed disulfide, and cystine in circulation.
    Sengupta S; Wehbe C; Majors AK; Ketterer ME; DiBello PM; Jacobsen DW
    J Biol Chem; 2001 Dec; 276(50):46896-904. PubMed ID: 11592966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of copper-catalyzed oxidation of low density lipoprotein by proteoglycans and glycosaminoglycans.
    Camejo G; Hurt-Camejo E; Rosengren B; Wiklund O; López F; Bondjers G
    J Lipid Res; 1991 Dec; 32(12):1983-91. PubMed ID: 1816326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ascorbate is particularly effective against LDL oxidation in the presence of iron(III) and homocysteine/cystine at acidic pH.
    Pfanzagl B
    Biochim Biophys Acta; 2005 Oct; 1736(3):237-43. PubMed ID: 16169276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.