These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9106673)

  • 1. Potentiation of phototactic suppression in Hermissenda by a chemosensory stimulus during compound conditioning.
    Farley J; Reasoner H; Janssen M
    Behav Neurosci; 1997 Apr; 111(2):320-41. PubMed ID: 9106673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentiation of phototactic suppression in Hermissenda by compound conditioning results in potentiated excitability changes in type B and A photoreceptors.
    Farley J; Jin I
    Behav Neurosci; 1997 Apr; 111(2):309-19. PubMed ID: 9106672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemosensory conditioning of Hermissenda crassicornis.
    Farley J; Grover LM; Sun L; Huang SS; Eisthen HL; Girolami C; Wu R
    Behav Neurosci; 1990 Aug; 104(4):583-96. PubMed ID: 2206428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trial-spacing effects in Hermissenda suggest contributions of associative and nonassociative cellular mechanisms.
    Rogers RF; Talk AC; Matzel LD
    Behav Neurosci; 1994 Dec; 108(6):1030-42. PubMed ID: 7893395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurophysiological substrates of context conditioning in Hermissenda suggest a temporally invariant form of activity-dependent neuronal facilitation.
    Talk AC; Muzzio IA; Matzel LD
    Neurobiol Learn Mem; 1999 Sep; 72(2):95-117. PubMed ID: 10438650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic basis of learning-correlated excitability changes in Hermissenda type A photoreceptors.
    Farley J; Han Y
    J Neurophysiol; 1997 Apr; 77(4):1861-88. PubMed ID: 9114242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incremental redistribution of protein kinase C underlies the acquisition curve during in vitro associative conditioning in Hermissenda.
    Muzzio IA; Talk AC; Matzel LD
    Behav Neurosci; 1997 Aug; 111(4):739-53. PubMed ID: 9267651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations in learning reflect individual differences in sensory function and synaptic integration.
    Matzel LD; Muzzio IA; Talk AC
    Behav Neurosci; 1996 Oct; 110(5):1084-95. PubMed ID: 8919011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of presynaptic action potential kinetics underlies synaptic facilitation of type B photoreceptors after associative conditioning in Hermissenda.
    Gandhi CC; Matzel LD
    J Neurosci; 2000 Mar; 20(5):2022-35. PubMed ID: 10684903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ryanodine receptor modulation of in vitro associative learning in Hermissenda crassicornis.
    Blackwell KT; Alkon DL
    Brain Res; 1999 Mar; 822(1-2):114-25. PubMed ID: 10082889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro associative conditioning of Hermissenda: cumulative depolarization of type B photoreceptors and short-term associative behavioral changes.
    Farley J; Alkon DL
    J Neurophysiol; 1987 Jun; 57(6):1639-68. PubMed ID: 3598626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive contributions of intracellular calcium and protein phosphatases to massed-trials learning deficits in Hermissenda.
    Muzzio IA; Ramirez RR; Talk AC; Matzel LD
    Behav Neurosci; 1999 Feb; 113(1):103-17. PubMed ID: 10197910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acquisition of conditioned associations in Hermissenda: additive effects of contiguity and the forward interstimulus interval.
    Matzel LD; Schreurs BG; Lederhendler I; Alkon DL
    Behav Neurosci; 1990 Aug; 104(4):597-606. PubMed ID: 2206429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pavlovian conditioning of distinct components of Hermissenda's responses to rotation.
    Matzel LD; Schreurs BG; Alkon DL
    Behav Neural Biol; 1990 Sep; 54(2):131-45. PubMed ID: 2241759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light paired with serotonin mimics the effect of conditioning on phototactic behavior of Hermissenda.
    Crow T; Forrester J
    Proc Natl Acad Sci U S A; 1986 Oct; 83(20):7975-8. PubMed ID: 3464014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contingency learning and causal detection in Hermissenda: I. Behavior.
    Farley J
    Behav Neurosci; 1987 Feb; 101(1):13-27. PubMed ID: 3828050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of associative learning in the terrestrial mollusc Limax maximus. II. Appetitive learning.
    Sahley CL; Martin KA; Gelperin A
    J Comp Physiol A; 1990 Aug; 167(3):339-45. PubMed ID: 2231476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of type B and A photoreceptor inhibitory synaptic connections in conditioned Hermissenda.
    Frysztak RJ; Crow T
    J Neurosci; 1994 Mar; 14(3 Pt 1):1245-50. PubMed ID: 8120622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral and neural bases of noncoincidence learning in Hermissenda.
    Britton G; Farley J
    J Neurosci; 1999 Oct; 19(20):9126-32. PubMed ID: 10516330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic efficacy is commonly regulated within a nervous system and predicts individual differences in learning.
    Matzel LD; Gandhi CC; Muzzio IA
    Neuroreport; 2000 Apr; 11(6):1253-8. PubMed ID: 10817602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.