These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 9106682)

  • 1. Blockade of CCK(B) but not CCK(A) receptors before and after the stress of predator exposure prevents lasting increases in anxiety-like behavior: implications for anxiety associated with posttraumatic stress disorder.
    Adamec RE; Shallow T; Budgell J
    Behav Neurosci; 1997 Apr; 111(2):435-49. PubMed ID: 9106682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMDA receptors mediate lasting increases in anxiety-like behavior produced by the stress of predator exposure--implications for anxiety associated with posttraumatic stress disorder.
    Adamec RE; Burton P; Shallow T; Budgell J
    Physiol Behav; 1999 Jan 1-15; 65(4-5):723-37. PubMed ID: 10073474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lasting anxiogenic effects of feline predator stress in mice: sex differences in vulnerability to stress and predicting severity of anxiogenic response from the stress experience.
    Adamec R; Head D; Blundell J; Burton P; Berton O
    Physiol Behav; 2006 Jun; 88(1-2):12-29. PubMed ID: 16624347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unilateral block of NMDA receptors in the amygdala prevents predator stress-induced lasting increases in anxiety-like behavior and unconditioned startle--effective hemisphere depends on the behavior.
    Adamec RE; Burton P; Shallow T; Budgell J
    Physiol Behav; 1999 Jan 1-15; 65(4-5):739-51. PubMed ID: 10073475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-lasting, selective, anxiogenic effects of feline predator stress in mice.
    Adamec R; Walling S; Burton P
    Physiol Behav; 2004 Dec; 83(3):401-10. PubMed ID: 15581662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for an involvement of the brain cholecystokinin B receptor in anxiety.
    Singh L; Lewis AS; Field MJ; Hughes J; Woodruff GN
    Proc Natl Acad Sci U S A; 1991 Feb; 88(4):1130-3. PubMed ID: 1996314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural plasticity, neuropeptides and anxiety in animals--implications for understanding and treating affective disorder following traumatic stress in humans.
    Adamec R; Kent P; Anisman H; Shallow T; Merali Z
    Neurosci Biobehav Rev; 1998; 23(2):301-18. PubMed ID: 9884124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioral and cortical EEG evaluations confirm the roles of both CCKA and CCKB receptors in mouse CCK-induced anxiety.
    Li H; Ohta H; Izumi H; Matsuda Y; Seki M; Toda T; Akiyama M; Matsushima Y; Goto Y; Kaga M; Inagaki M
    Behav Brain Res; 2013 Jan; 237():325-32. PubMed ID: 23043971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased CCK(B) receptor binding in rat amygdala in animals demonstrating greater anxiety-like behavior.
    Wunderlich GR; Raymond R; DeSousa NJ; Nobrega JN; Vaccarino FJ
    Psychopharmacology (Berl); 2002 Nov; 164(2):193-9. PubMed ID: 12404082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vulnerability to mild predator stress in serotonin transporter knockout mice.
    Adamec R; Burton P; Blundell J; Murphy DL; Holmes A
    Behav Brain Res; 2006 Jun; 170(1):126-40. PubMed ID: 16546269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of mTOR kinase via rapamycin blocks persistent predator stress-induced hyperarousal.
    Fifield K; Hebert M; Angel R; Adamec R; Blundell J
    Behav Brain Res; 2013 Nov; 256():457-63. PubMed ID: 24001755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of amygdala cholecystokininB receptors potentiates the acoustic startle response in the rat.
    Frankland PW; Josselyn SA; Bradwejn J; Vaccarino FJ; Yeomans JS
    J Neurosci; 1997 Mar; 17(5):1838-47. PubMed ID: 9030642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein synthesis and the mechanisms of lasting change in anxiety induced by severe stress.
    Adamec R; Strasser K; Blundell J; Burton P; McKay DW
    Behav Brain Res; 2006 Feb; 167(2):270-86. PubMed ID: 16256211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BOC-CCK-4, CCK(B)receptor agonist, antagonizes anxiolytic-like action of morphine in elevated plus-maze.
    Kõks S; Soosaar A; Võikar V; Bourin M; Vasar E
    Neuropeptides; 1999 Feb; 33(1):63-9. PubMed ID: 10657473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmitter systems involved in neural plasticity underlying increased anxiety and defense--implications for understanding anxiety following traumatic stress.
    Adamec R
    Neurosci Biobehav Rev; 1997 Nov; 21(6):755-65. PubMed ID: 9415900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 'Anxiolytic' effect of CCK-antagonists on plus-maze behavior in mice.
    Rataud J; Darche F; Piot O; Stutzmann JM; Böhme GA; Blanchard JC
    Brain Res; 1991 May; 548(1-2):315-7. PubMed ID: 1868342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prophylactic and therapeutic effects of acute systemic injections of EMD 281014, a selective serotonin 2A receptor antagonist on anxiety induced by predator stress in rats.
    Adamec R; Creamer K; Bartoszyk GD; Burton P
    Eur J Pharmacol; 2004 Nov; 504(1-2):79-96. PubMed ID: 15507224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anxiety-related behaviors in cholecystokinin-A, B, and AB receptor gene knockout mice in the plus-maze.
    Miyasaka K; Kobayashi S; Ohta M; Kanai S; Yoshida Y; Nagata A; Matsui T; Noda T; Takiguchi S; Takata Y; Kawanami T; Funakoshi A
    Neurosci Lett; 2002 Dec; 335(2):115-8. PubMed ID: 12459512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of noradrenergic and corticoid receptors in the consolidation of the lasting anxiogenic effects of predator stress.
    Adamec R; Muir C; Grimes M; Pearcey K
    Behav Brain Res; 2007 May; 179(2):192-207. PubMed ID: 17335916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholecystokinin B receptors in the periaqueductal gray potentiate defensive rage behavior elicited from the medial hypothalamus of the cat.
    Luo B; Cheu JW; Siegel A
    Brain Res; 1998 Jun; 796(1-2):27-37. PubMed ID: 9689451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.