BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 9107315)

  • 1. Catalytic mechanism of F1-ATPase.
    Weber J; Senior AE
    Biochim Biophys Acta; 1997 Mar; 1319(1):19-58. PubMed ID: 9107315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling H+ transport and ATP synthesis in F1F0-ATP synthases: glimpses of interacting parts in a dynamic molecular machine.
    Fillingame RH
    J Exp Biol; 1997 Jan; 200(Pt 2):217-24. PubMed ID: 9050229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent developments on structural and functional aspects of the F1 sector of H+-linked ATPases.
    Vignais PV; Satre M
    Mol Cell Biochem; 1984; 60(1):33-71. PubMed ID: 6231469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the epsilon subunit of the proton-translocating ATP synthase from Escherichia coli.
    Uhlin U; Cox GB; Guss JM
    Structure; 1997 Sep; 5(9):1219-30. PubMed ID: 9331422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and arrangement of the delta subunit in the E. coli ATP synthase (ECF1F0).
    Wilkens S; Rodgers A; Ogilvie I; Capaldi RA
    Biophys Chem; 1997 Oct; 68(1-3):95-102. PubMed ID: 9468613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structural and functional connection between the catalytic and proton translocating sectors of the mitochondrial F1F0-ATP synthase.
    Papa S; Zanotti F; Gaballo A
    J Bioenerg Biomembr; 2000 Aug; 32(4):401-11. PubMed ID: 11768302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The trapping of different conformations of the Escherichia coli F1 ATPase by disulfide bond formation. Effect on nucleotide binding affinities of the catalytic sites.
    Grüber G; Capaldi RA
    J Biol Chem; 1996 Dec; 271(51):32623-8. PubMed ID: 8955091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron microscopic evidence of two stalks linking the F1 and F0 parts of the Escherichia coli ATP synthase.
    Wilkens S; Capaldi RA
    Biochim Biophys Acta; 1998 Jun; 1365(1-2):93-7. PubMed ID: 9693727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine triphosphatase and nucleotide binding activity of isolated beta-subunit preparations from Escherichia coli F1F0-ATP synthase.
    al-Shawi MK; Parsonage D; Senior AE
    J Biol Chem; 1990 Apr; 265(10):5595-601. PubMed ID: 2156822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-dependent structural variations in Escherichia coli F1 ATPase revealed by cryoelectron microscopy.
    Gogol EP; Johnston E; Aggeler R; Capaldi RA
    Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9585-9. PubMed ID: 2148209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural model of the transmembrane Fo rotary sector of H+-transporting ATP synthase derived by solution NMR and intersubunit cross-linking in situ.
    Fillingame RH; Dmitriev OY
    Biochim Biophys Acta; 2002 Oct; 1565(2):232-45. PubMed ID: 12409198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defective energy coupling in delta-subunit mutants of Escherichia coli F1F0-ATP synthase.
    Hazard AL; Senior AE
    J Biol Chem; 1994 Jan; 269(1):427-32. PubMed ID: 8276831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal structure of the nucleotide-free alpha 3 beta 3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer.
    Shirakihara Y; Leslie AG; Abrahams JP; Walker JE; Ueda T; Sekimoto Y; Kambara M; Saika K; Kagawa Y; Yoshida M
    Structure; 1997 Jun; 5(6):825-36. PubMed ID: 9261073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of the central stalk in bovine F(1)-ATPase at 2.4 A resolution.
    Gibbons C; Montgomery MG; Leslie AG; Walker JE
    Nat Struct Biol; 2000 Nov; 7(11):1055-61. PubMed ID: 11062563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the Escherichia coli ATP synthase and role of the gamma and epsilon subunits in coupling catalytic site and proton channeling functions.
    Capaldi RA; Aggeler R; Gogol EP; Wilkens S
    J Bioenerg Biomembr; 1992 Oct; 24(5):435-9. PubMed ID: 1429536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton ATPases in bacteria: comparison to Escherichia coli F1F0 as the prototype.
    Fillingame RH; Divall S
    Novartis Found Symp; 1999; 221():218-29; discussion 229-34. PubMed ID: 10207922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular architecture of the rotary motor in ATP synthase.
    Stock D; Leslie AG; Walker JE
    Science; 1999 Nov; 286(5445):1700-5. PubMed ID: 10576729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides.
    Salcedo G; Cano-Sánchez P; de Gómez-Puyou MT; Velázquez-Campoy A; García-Hernández E
    Biochim Biophys Acta; 2014 Jan; 1837(1):44-50. PubMed ID: 23994287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the stalk in the coupling mechanism of F1F0-ATPases.
    Walker JE; Collinson IR
    FEBS Lett; 1994 Jun; 346(1):39-43. PubMed ID: 8206156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling between catalytic sites and the proton channel in F1F0-type ATPases.
    Capaldi RA; Aggeler R; Turina P; Wilkens S
    Trends Biochem Sci; 1994 Jul; 19(7):284-9. PubMed ID: 8048168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.