These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 9107529)
41. [Transport of ions into human erythrocytes in various forms of hemolytic anemia: a correlation analysis]. Orlov SN; Pokudin NI; El'-Rabi LS; Brusovanik VI; Kubatiev AA Biokhimiia; 1993 Jun; 58(6):866-73. PubMed ID: 8364110 [TBL] [Abstract][Full Text] [Related]
42. Evidence for a protective role of the Gardos channel against hemolysis in murine spherocytosis. De Franceschi L; Rivera A; Fleming MD; Honczarenko M; Peters LL; Gascard P; Mohandas N; Brugnara C Blood; 2005 Aug; 106(4):1454-9. PubMed ID: 15855279 [TBL] [Abstract][Full Text] [Related]
43. Na(+)-H+ exchanger and its role in essential hypertension and diabetes mellitus. Huot SJ; Aronson PS Diabetes Care; 1991 Jun; 14(6):521-35. PubMed ID: 1650693 [TBL] [Abstract][Full Text] [Related]
44. Variations of intracellular pH in human erythrocytes via K(+)(Na(+))/H(+) exchange under low ionic strength conditions. Kummerow D; Hamann J; Browning JA; Wilkins R; Ellory JC; Bernhardt I J Membr Biol; 2000 Aug; 176(3):207-16. PubMed ID: 10931972 [TBL] [Abstract][Full Text] [Related]
45. Can we use erythrocytes for the study of the activity of the ubiquitous Na+/H+ exchanger (NHE-1) in essential hypertension? Orlov SN; Kuznetsov SR; Pokudin NI; Tremblay J; Hamet P Am J Hypertens; 1998 Jul; 11(7):774-83. PubMed ID: 9683037 [TBL] [Abstract][Full Text] [Related]
46. Molecular origin of Na(+)/Li(+) exchanger: Evidence against the involvement of major cloned erythrocyte transporters. Koltsova SV; Trushina YA; Akimova OA; Hamet P; Orlov SN Pathophysiology; 2011 Jun; 18(3):207-13. PubMed ID: 21247741 [TBL] [Abstract][Full Text] [Related]
47. Effect of cell age and phenylhydrazine on the cation transport properties of rabbit erythrocytes. Brugnara C; de Franceschi L J Cell Physiol; 1993 Feb; 154(2):271-80. PubMed ID: 8381125 [TBL] [Abstract][Full Text] [Related]
48. Deficiency of Src family kinases Fgr and Hck results in activation of erythrocyte K/Cl cotransport. De Franceschi L; Fumagalli L; Olivieri O; Corrocher R; Lowell CA; Berton G J Clin Invest; 1997 Jan; 99(2):220-7. PubMed ID: 9005990 [TBL] [Abstract][Full Text] [Related]
49. Red cell membrane Na+ transport systems in hereditary spherocytosis: relevance to understanding the increased Na+ permeability. Vives Corrons JL; Besson I Ann Hematol; 2001 Sep; 80(9):535-9. PubMed ID: 11669303 [TBL] [Abstract][Full Text] [Related]
50. Erythrocyte cation transport systems and membrane lipids in insulin-dependent diabetes. Lijnen P; Fenyvesi A; Bex M; Bouillon R; Amery A Am J Hypertens; 1993 Sep; 6(9):763-70. PubMed ID: 8110430 [TBL] [Abstract][Full Text] [Related]
51. Red blood cell Li+/Na+ exchange in patients with diabetic nephropathy and essential hypertension: therapeutic implications. Semplicini A; Marzola M; Mozzato G; Ceolotto G; Pessina AC Ren Fail; 1993; 15(3):331-8. PubMed ID: 8516486 [TBL] [Abstract][Full Text] [Related]
52. The Gárdos channel: a review of the Ca2+-activated K+ channel in human erythrocytes. Maher AD; Kuchel PW Int J Biochem Cell Biol; 2003 Aug; 35(8):1182-97. PubMed ID: 12757756 [TBL] [Abstract][Full Text] [Related]
53. Effect of 1-chloro-2,4-dinitrobenzene on K+ transport in normal and sickle human red blood cells. Muzyamba MC; Gibson JS J Physiol; 2003 Mar; 547(Pt 3):903-11. PubMed ID: 12576491 [TBL] [Abstract][Full Text] [Related]
54. [Potassium and anion transport and activity of the Na+-pump in the erythrocyte membrane: 3 different mechanisms of regulation by intracellular calcium]. Orlov SN; Pokudin NI; Kotelevtsev IuV Biokhimiia; 1987 Aug; 52(8):1373-86. PubMed ID: 2444274 [TBL] [Abstract][Full Text] [Related]
55. The influence of merocyanine 540 and protoporphyrin on physicochemical properties of the erythrocyte membrane. Lagerberg JW; Williams M; Moor AC; Brand A; van der Zee J; Dubbelman TM; VanSteveninck J Biochim Biophys Acta; 1996 Jan; 1278(2):247-53. PubMed ID: 8593283 [TBL] [Abstract][Full Text] [Related]
56. Passive sodium and potassium movements in sickle erythrocytes. Berkowitz LR; Orringer EP Am J Physiol; 1985 Sep; 249(3 Pt 1):C208-14. PubMed ID: 4037070 [TBL] [Abstract][Full Text] [Related]
57. Copper modifies the activity of sodium-transporting systems in erythrocyte membrane in patients with essential hypertension. Kedzierska K; Bober J; Ciechanowski K; Gołembiewska E; Kwiatkowska E; Noceń I; Dołegowska B; Dutkiewicz G; Chlubek D Biol Trace Elem Res; 2005 Oct; 107(1):21-32. PubMed ID: 16170219 [TBL] [Abstract][Full Text] [Related]
58. Red cell volume regulation: the pivotal role of ionic strength in controlling swelling-dependent transport systems. Motais R; Guizouarn H; Garcia-Romeu F Biochim Biophys Acta; 1991 Oct; 1075(2):169-80. PubMed ID: 1657175 [TBL] [Abstract][Full Text] [Related]
59. Sulfhydryl oxidation and activation of red cell K(+)-Cl- cotransport in the transgenic SAD mouse. De Franceschi L; Beuzard Y; Brugnara C Am J Physiol; 1995 Oct; 269(4 Pt 1):C899-906. PubMed ID: 7485459 [TBL] [Abstract][Full Text] [Related]