BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 9107547)

  • 1. In vitro free radical metabolism of phenolphthalein by peroxidases.
    Sipe HJ; Corbett JT; Mason RP
    Drug Metab Dispos; 1997 Apr; 25(4):468-80. PubMed ID: 9107547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The metabolism of 17 beta-estradiol by lactoperoxidase: a possible source of oxidative stress in breast cancer.
    Sipe HJ; Jordan SJ; Hanna PM; Mason RP
    Carcinogenesis; 1994 Nov; 15(11):2637-43. PubMed ID: 7955118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: implications for benzene toxicity.
    Stoyanovsky DA; Goldman R; Claycamp HG; Kagan VE
    Arch Biochem Biophys; 1995 Mar; 317(2):315-23. PubMed ID: 7893144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione-mediated formation of oxygen free radicals by the major metabolite of oltipraz.
    Velayutham M; Villamena FA; Navamal M; Fishbein JC; Zweier JL
    Chem Res Toxicol; 2005 Jun; 18(6):970-5. PubMed ID: 15962931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin-trapping studies of peroxynitrite decomposition and of 3-morpholinosydnonimine N-ethylcarbamide autooxidation: direct evidence for metal-independent formation of free radical intermediates.
    Augusto O; Gatti RM; Radi R
    Arch Biochem Biophys; 1994 Apr; 310(1):118-25. PubMed ID: 8161194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peroxynitrite-mediated decarboxylation of pyruvate to both carbon dioxide and carbon dioxide radical anion.
    Vásquez-Vivar J; Denicola A; Radi R; Augusto O
    Chem Res Toxicol; 1997 Jul; 10(7):786-94. PubMed ID: 9250413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible role of free radical formation in clozapine (clozaril)-induced agranulocytosis.
    Fischer V; Haar JA; Greiner L; Lloyd RV; Mason RP
    Mol Pharmacol; 1991 Nov; 40(5):846-53. PubMed ID: 1658615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin trapping of azidyl and hydroxyl radicals in azide-inhibited rat brain submitochondrial particles.
    Partridge RS; Monroe SM; Parks JK; Johnson K; Parker WD; Eaton GR; Eaton SS
    Arch Biochem Biophys; 1994 Apr; 310(1):210-7. PubMed ID: 8161207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the free radicals formed in the metmyoglobin-hydrogen peroxide reaction.
    Gunther MR
    Free Radic Biol Med; 2004 Jun; 36(11):1345-54. PubMed ID: 15135170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EPR studies of spin-trapped free radicals in paraquat-treated lung microsomes.
    Zang LY; van Kuijk FJ; Misra HP
    Biochem Mol Biol Int; 1995 Oct; 37(2):255-62. PubMed ID: 8673008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein radical formation during lactoperoxidase-mediated oxidation of the suicide substrate glutathione: immunochemical detection of a lactoperoxidase radical-derived 5,5-dimethyl-1-pyrroline N-oxide nitrone adduct.
    Guo Q; Detweiler CD; Mason RP
    J Biol Chem; 2004 Mar; 279(13):13272-83. PubMed ID: 14724284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and characterization of the electron paramagnetic resonance-silent glutathionyl-5,5-dimethyl-1-pyrroline N-oxide adduct derived from redox cycling of phenoxyl radicals in model systems and HL-60 cells.
    Stoyanovosky DA; Goldman R; Jonnalagadda SS; Day BW; Claycamp HG; Kagan VE
    Arch Biochem Biophys; 1996 Jun; 330(1):3-11. PubMed ID: 8651701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of thiyl radical adducts formed during hydroxyl radical- and peroxynitrite-mediated oxidation of thiols--a high resolution ESR spin-trapping study at Q-band (35 GHz).
    Kalyanaraman B; Karoui H; Singh RJ; Felix CC
    Anal Biochem; 1996 Oct; 241(1):75-81. PubMed ID: 8921168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro bioactivation of phenytoin to a reactive free radical intermediate by prostaglandin synthetase, horseradish peroxidase, and thyroid peroxidase.
    Kubow S; Wells PG
    Mol Pharmacol; 1989 Apr; 35(4):504-11. PubMed ID: 2539558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug-induced protein free radical formation is attenuated by unsaturated fatty acids by scavenging drug-derived phenyl radical metabolites.
    Narwaley M; Michail K; Arvadia P; Siraki AG
    Chem Res Toxicol; 2011 Jul; 24(7):1031-9. PubMed ID: 21671642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ascorbate interacts with reduced glutathione to scavenge phenoxyl radicals in HL60 cells.
    Cuddihy SL; Parker A; Harwood DT; Vissers MC; Winterbourn CC
    Free Radic Biol Med; 2008 Apr; 44(8):1637-44. PubMed ID: 18291121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 1. Carbon dioxide radical anion.
    Villamena FA; Locigno EJ; Rockenbauer A; Hadad CM; Zweier JL
    J Phys Chem A; 2006 Dec; 110(49):13253-8. PubMed ID: 17149843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uric acid oxidation by peroxynitrite: multiple reactions, free radical formation, and amplification of lipid oxidation.
    Santos CX; Anjos EI; Augusto O
    Arch Biochem Biophys; 1999 Dec; 372(2):285-94. PubMed ID: 10600166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemical and photobiological studies of tirapazamine (SR 4233) and related quinoxaline 1,4-Di-N-oxide analogues.
    Inbaraj JJ; Motten AG; Chignell CF
    Chem Res Toxicol; 2003 Feb; 16(2):164-70. PubMed ID: 12588187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.