BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 9108044)

  • 1. Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro.
    Rogers SL; Tint IS; Fanapour PC; Gelfand VI
    Proc Natl Acad Sci U S A; 1997 Apr; 94(8):3720-5. PubMed ID: 9108044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynein, dynactin, and kinesin II's interaction with microtubules is regulated during bidirectional organelle transport.
    Reese EL; Haimo LT
    J Cell Biol; 2000 Oct; 151(1):155-66. PubMed ID: 11018061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores.
    Tuma MC; Zill A; Le Bot N; Vernos I; Gelfand V
    J Cell Biol; 1998 Dec; 143(6):1547-58. PubMed ID: 9852150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myosin cooperates with microtubule motors during organelle transport in melanophores.
    Rogers SL; Gelfand VI
    Curr Biol; 1998 Jan; 8(3):161-4. PubMed ID: 9443916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors.
    Levi V; Serpinskaya AS; Gratton E; Gelfand V
    Biophys J; 2006 Jan; 90(1):318-27. PubMed ID: 16214870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of microtubule-based transport by MAP4.
    Semenova I; Ikeda K; Resaul K; Kraikivski P; Aguiar M; Gygi S; Zaliapin I; Cowan A; Rodionov V
    Mol Biol Cell; 2014 Oct; 25(20):3119-32. PubMed ID: 25143402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetries in kinesin-2 and cytoplasmic dynein contributions to melanosome transport.
    De Rossi MC; De Rossi ME; Sued M; Rodríguez D; Bruno L; Levi V
    FEBS Lett; 2015 Sep; 589(19 Pt B):2763-8. PubMed ID: 26247430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinesin is responsible for centrifugal movement of pigment granules in melanophores.
    Rodionov VI; Gyoeva FK; Gelfand VI
    Proc Natl Acad Sci U S A; 1991 Jun; 88(11):4956-60. PubMed ID: 1828887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cytoskeleton in fish melanophore melanosome positioning.
    Sköld HN; Aspengren S; Wallin M
    Microsc Res Tech; 2002 Sep; 58(6):464-9. PubMed ID: 12242703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions and regulation of molecular motors in Xenopus melanophores.
    Gross SP; Tuma MC; Deacon SW; Serpinskaya AS; Reilein AR; Gelfand VI
    J Cell Biol; 2002 Mar; 156(5):855-65. PubMed ID: 11864991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CK1 activates minus-end-directed transport of membrane organelles along microtubules.
    Ikeda K; Zhapparova O; Brodsky I; Semenova I; Tirnauer JS; Zaliapin I; Rodionov V
    Mol Biol Cell; 2011 Apr; 22(8):1321-9. PubMed ID: 21307338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles.
    Kashina AS; Semenova IV; Ivanov PA; Potekhina ES; Zaliapin I; Rodionov VI
    Curr Biol; 2004 Oct; 14(20):1877-81. PubMed ID: 15498498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of kinesin and cytoplasmic dynein in cultured melanophores from Atlantic cod, Gadus morhua.
    Nilsson H; Rutberg M; Wallin M
    Cell Motil Cytoskeleton; 1996; 33(3):183-96. PubMed ID: 8674138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role for spectrin in dynactin-dependent melanosome transport in Xenopus laevis melanophores.
    Aspengren S; Wallin M
    Pigment Cell Res; 2004 Jun; 17(3):295-301. PubMed ID: 15140076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms of pigment transport in melanophores.
    Tuma MC; Gelfand VI
    Pigment Cell Res; 1999 Oct; 12(5):283-94. PubMed ID: 10541038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynactin is required for bidirectional organelle transport.
    Deacon SW; Serpinskaya AS; Vaughan PS; Lopez Fanarraga M; Vernos I; Vaughan KT; Gelfand VI
    J Cell Biol; 2003 Feb; 160(3):297-301. PubMed ID: 12551954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential regulation of dynein-driven melanosome movement.
    Reilein AR; Serpinskaya AS; Karcher RL; Dujardin DL; Vallee RB; Gelfand VI
    Biochem Biophys Res Commun; 2003 Sep; 309(3):652-8. PubMed ID: 12963040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of colcemid on the centrosome and microtubules in dermal melanophores of Xenopus laevis larvae in vivo.
    Rubin KA; Starodubov SM; Onishchenko GE
    Cell Mol Biol (Noisy-le-grand); 1999 Nov; 45(7):1099-117. PubMed ID: 10644015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of acrylamide, latrunculin, and nocodazole on intracellular transport and cytoskeletal organization in melanophores.
    Aspengren S; Wielbass L; Wallin M
    Cell Motil Cytoskeleton; 2006 Jul; 63(7):423-36. PubMed ID: 16671098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamic properties of intermediate filaments during organelle transport.
    Chang L; Barlan K; Chou YH; Grin B; Lakonishok M; Serpinskaya AS; Shumaker DK; Herrmann H; Gelfand VI; Goldman RD
    J Cell Sci; 2009 Aug; 122(Pt 16):2914-23. PubMed ID: 19638410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.