These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 9108061)
21. The Ensemble of Conformations of Antifreeze Glycoproteins (AFGP8): A Study Using Nuclear Magnetic Resonance Spectroscopy. Her C; Yeh Y; Krishnan VV Biomolecules; 2019 Jun; 9(6):. PubMed ID: 31213033 [TBL] [Abstract][Full Text] [Related]
22. Adsorption to ice of fish antifreeze glycopeptides 7 and 8. Knight CA; Driggers E; DeVries AL Biophys J; 1993 Jan; 64(1):252-9. PubMed ID: 8431545 [TBL] [Abstract][Full Text] [Related]
23. Helical antifreeze proteins have independently evolved in fishes on four occasions. Graham LA; Hobbs RS; Fletcher GL; Davies PL PLoS One; 2013; 8(12):e81285. PubMed ID: 24324684 [TBL] [Abstract][Full Text] [Related]
24. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. Chen Z; Cheng CH; Zhang J; Cao L; Chen L; Zhou L; Jin Y; Ye H; Deng C; Dai Z; Xu Q; Hu P; Sun S; Shen Y; Chen L Proc Natl Acad Sci U S A; 2008 Sep; 105(35):12944-9. PubMed ID: 18753634 [TBL] [Abstract][Full Text] [Related]
25. On the origin and trigger of the notothenioid adaptive radiation. Matschiner M; Hanel R; Salzburger W PLoS One; 2011 Apr; 6(4):e18911. PubMed ID: 21533117 [TBL] [Abstract][Full Text] [Related]
26. Propagation of a De Novo Gene under Natural Selection: Antifreeze Glycoprotein Genes and Their Evolutionary History in Codfishes. Zhuang X; Cheng CC Genes (Basel); 2021 Nov; 12(11):. PubMed ID: 34828383 [TBL] [Abstract][Full Text] [Related]
27. Variation in blood serum antifreeze activity of Antarctic Trematomus fishes across habitat temperature and depth. Fields LG; DeVries AL Comp Biochem Physiol A Mol Integr Physiol; 2015 Jul; 185():43-50. PubMed ID: 25770668 [TBL] [Abstract][Full Text] [Related]
28. Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenies of fishes from Antarctica (suborder Notothenioidei), and the evolution of antifreeze glycopeptides. Bargelloni L; Ritchie PA; Patarnello T; Battaglia B; Lambert DM; Meyer A Mol Biol Evol; 1994 Nov; 11(6):854-63. PubMed ID: 7815925 [TBL] [Abstract][Full Text] [Related]
29. In situ gene mapping of two genes supports independent evolution of sex chromosomes in cold-adapted Antarctic fish. Ghigliotti L; Cheng CH; Bonillo C; Coutanceau JP; Pisano E Biomed Res Int; 2013; 2013():243938. PubMed ID: 23509694 [TBL] [Abstract][Full Text] [Related]
30. Primary and secondary structure of antifreeze peptides from arctic and antarctic zoarcid fishes. Schrag JD; Cheng CH; Panico M; Morris HR; DeVries AL Biochim Biophys Acta; 1987 Oct; 915(3):357-70. PubMed ID: 3477289 [TBL] [Abstract][Full Text] [Related]
31. Freezing avoidance and the distribution of antifreeze glycopeptides in body fluids and tissues of Antarctic fish. Ahlgren JA; Cheng CC; Schrag JD; DeVries AL J Exp Biol; 1988 Jul; 137():549-63. PubMed ID: 3209974 [TBL] [Abstract][Full Text] [Related]
33. Antifreeze glycoproteins from polar fish blood. Feeney RE; Burcham TS; Yeh Y Annu Rev Biophys Biophys Chem; 1986; 15():59-78. PubMed ID: 3521661 [TBL] [Abstract][Full Text] [Related]
34. Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species. Coppes Petricorena ZL; Somero GN Comp Biochem Physiol A Mol Integr Physiol; 2007 Jul; 147(3):799-807. PubMed ID: 17293146 [TBL] [Abstract][Full Text] [Related]
35. Adaptive evolution of hepcidin genes in antarctic notothenioid fishes. Xu Q; Cheng CH; Hu P; Ye H; Chen Z; Cao L; Chen L; Shen Y; Chen L Mol Biol Evol; 2008 Jun; 25(6):1099-112. PubMed ID: 18310660 [TBL] [Abstract][Full Text] [Related]
36. Genomic basis for antifreeze peptide heterogeneity and abundance in an Antarctic eel pout: gene structures and organization. Wang X; DeVries AL; Cheng CH Mol Mar Biol Biotechnol; 1995 Jun; 4(2):135-47. PubMed ID: 7773331 [TBL] [Abstract][Full Text] [Related]
37. Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers. Nagel L; Plattner C; Budke C; Majer Z; DeVries AL; Berkemeier T; Koop T; Sewald N Amino Acids; 2011 Aug; 41(3):719-32. PubMed ID: 21603949 [TBL] [Abstract][Full Text] [Related]
38. New insights into evolution of IgT genes coming from Antarctic teleosts. Giacomelli S; Buonocore F; Albanese F; Scapigliati G; Gerdol M; Oreste U; Coscia MR Mar Genomics; 2015 Dec; 24 Pt 1():55-68. PubMed ID: 26122835 [TBL] [Abstract][Full Text] [Related]
39. The evolution of thermal adaptation in polar fish. Verde C; Parisi E; di Prisco G Gene; 2006 Dec; 385():137-45. PubMed ID: 16757135 [TBL] [Abstract][Full Text] [Related]
40. Perturbation of long-range water dynamics as the mechanism for the antifreeze activity of antifreeze glycoprotein. Mallajosyula SS; Vanommeslaeghe K; MacKerell AD J Phys Chem B; 2014 Oct; 118(40):11696-706. PubMed ID: 25137353 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]