These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9108149)

  • 1. The specificity of sty SKI, a type I restriction enzyme, implies a structure with rotational symmetry.
    Thorpe PH; Ternent D; Murray NE
    Nucleic Acids Res; 1997 May; 25(9):1694-700. PubMed ID: 9108149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A prediction of the amino acids and structures involved in DNA recognition by type I DNA restriction and modification enzymes.
    Sturrock SS; Dryden DT
    Nucleic Acids Res; 1997 Sep; 25(17):3408-14. PubMed ID: 9254696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Families of restriction enzymes: an analysis prompted by molecular and genetic data for type ID restriction and modification systems.
    Titheradge AJ; King J; Ryu J; Murray NE
    Nucleic Acids Res; 2001 Oct; 29(20):4195-205. PubMed ID: 11600708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The DNA recognition subunit of the type IB restriction-modification enzyme EcoAI tolerates circular permutions of its polypeptide chain.
    Janscak P; Bickle TA
    J Mol Biol; 1998 Dec; 284(4):937-48. PubMed ID: 9837717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The recognition and modification sites for the bacterial type I restriction systems KpnAI, StySEAI, StySENI and StySGI.
    Kasarjian JK; Hidaka M; Horiuchi T; Iida M; Ryu J
    Nucleic Acids Res; 2004 Jun; 32(10):e82. PubMed ID: 15199175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the thermostable archaeal intron-encoded endonuclease I-DmoI.
    Silva GH; Dalgaard JZ; Belfort M; Van Roey P
    J Mol Biol; 1999 Mar; 286(4):1123-36. PubMed ID: 10047486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KpnBI is the prototype of a new family (IE) of bacterial type I restriction-modification system.
    Chin V; Valinluck V; Magaki S; Ryu J
    Nucleic Acids Res; 2004 Oct; 32(18):e138. PubMed ID: 15475385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target recognition by EcoKI: the recognition domain is robust and restriction-deficiency commonly results from the proteolytic control of enzyme activity.
    O'Neill M; Powell LM; Murray NE
    J Mol Biol; 2001 Mar; 307(3):951-63. PubMed ID: 11273713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the structure and operation of type I DNA restriction enzymes.
    Davies GP; Martin I; Sturrock SS; Cronshaw A; Murray NE; Dryden DT
    J Mol Biol; 1999 Jul; 290(2):565-79. PubMed ID: 10390354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conservation of motifs within the unusually variable polypeptide sequences of type I restriction and modification enzymes.
    Murray NE; Daniel AS; Cowan GM; Sharp PM
    Mol Microbiol; 1993 Jul; 9(1):133-43. PubMed ID: 8412658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletions within the DNA recognition subunit of M.EcoR124I that identify a region involved in protein-protein interactions between HsdS and HsdM.
    Abadjieva A; Webb M; Patel J; Zinkevich V; Firman K
    J Mol Biol; 1994 Aug; 241(1):35-43. PubMed ID: 8051705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A third family of allelic hsd genes in Salmonella enterica: sequence comparisons with related proteins identify conserved regions implicated in restriction of DNA.
    Titheradge AJ; Ternent D; Murray NE
    Mol Microbiol; 1996 Nov; 22(3):437-47. PubMed ID: 8939428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation in the specificity polypeptide of the type I restriction endonuclease R.EcoK that affects subunit assembly.
    Zinkevich V; Heslop P; Glover SW; Weiserova M; Hubácek J; Firman K
    J Mol Biol; 1992 Oct; 227(3):597-601. PubMed ID: 1404378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deletion mutant of the type IC restriction endonuclease EcoR1241 expressing a novel DNA specificity.
    Abadjieva A; Patel J; Webb M; Zinkevich V; Firman K
    Nucleic Acids Res; 1993 Sep; 21(19):4435-43. PubMed ID: 8233776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endonuclease (R) subunits of type-I and type-III restriction-modification enzymes contain a helicase-like domain.
    Gorbalenya AE; Koonin EV
    FEBS Lett; 1991 Oct; 291(2):277-81. PubMed ID: 1657645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of DNA cleavage specificities of type II restriction endonucleases by reassortment of target recognition domains.
    Jurenaite-Urbanaviciene S; Serksnaite J; Kriukiene E; Giedriene J; Venclovas C; Lubys A
    Proc Natl Acad Sci U S A; 2007 Jun; 104(25):10358-63. PubMed ID: 17553965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the subunit assembly of the typeIC restriction-modification enzyme EcoR124I.
    Janscak P; Dryden DT; Firman K
    Nucleic Acids Res; 1998 Oct; 26(19):4439-45. PubMed ID: 9742247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and functional analysis of the symmetrical Type I restriction endonuclease R.EcoR124I
    Taylor JE; Swiderska A; Artero JB; Callow P; Kneale G
    PLoS One; 2012; 7(4):e35263. PubMed ID: 22493743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a subdomain within DNA-(cytosine-C5)-methyltransferases responsible for the recognition of the 5' part of their DNA target.
    Lange C; Wild C; Trautner TA
    EMBO J; 1996 Mar; 15(6):1443-50. PubMed ID: 8635477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single amino acid substitutions in the HsdR subunit of the type IB restriction enzyme EcoAI uncouple the DNA translocation and DNA cleavage activities of the enzyme.
    Janscak P; Sandmeier U; Bickle TA
    Nucleic Acids Res; 1999 Jul; 27(13):2638-43. PubMed ID: 10373579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.