These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 9108213)

  • 1. The development of goal-directed reaching in infants. II. Learning to produce task-adequate patterns of joint torque.
    Konczak J; Borutta M; Dichgans J
    Exp Brain Res; 1997 Mar; 113(3):465-74. PubMed ID: 9108213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of goal-directed reaching in infants: hand trajectory formation and joint torque control.
    Konczak J; Borutta M; Topka H; Dichgans J
    Exp Brain Res; 1995; 106(1):156-68. PubMed ID: 8542971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics.
    Topka H; Konczak J; Schneider K; Boose A; Dichgans J
    Exp Brain Res; 1998 Apr; 119(4):493-503. PubMed ID: 9588784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebellar ataxia: abnormal control of interaction torques across multiple joints.
    Bastian AJ; Martin TA; Keating JG; Thach WT
    J Neurophysiol; 1996 Jul; 76(1):492-509. PubMed ID: 8836239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinating two degrees of freedom during human arm movement: load and speed invariance of relative joint torques.
    Gottlieb GL; Song Q; Hong DA; Corcos DM
    J Neurophysiol; 1996 Nov; 76(5):3196-206. PubMed ID: 8930266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of inactivation of the anterior interpositus nucleus on the kinematic and dynamic control of multijoint movement.
    Cooper SE; Martin JH; Ghez C
    J Neurophysiol; 2000 Oct; 84(4):1988-2000. PubMed ID: 11024092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in control of limb dynamics during dominant and nondominant arm reaching.
    Sainburg RL; Kalakanis D
    J Neurophysiol; 2000 May; 83(5):2661-75. PubMed ID: 10805666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction torque contributes to planar reaching at slow speed.
    Yamasaki H; Tagami Y; Fujisawa H; Hoshi F; Nagasaki H
    Biomed Eng Online; 2008 Oct; 7():27. PubMed ID: 18940016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensation for interaction torques during single- and multijoint limb movement.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements.
    Galloway JC; Koshland GF
    Exp Brain Res; 2002 Jan; 142(2):163-80. PubMed ID: 11807572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The leading joint hypothesis for spatial reaching arm motions.
    Ambike S; Schmiedeler JP
    Exp Brain Res; 2013 Feb; 224(4):591-603. PubMed ID: 23229774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toy-oriented changes during early arm movements IV: shoulder-elbow coordination.
    Lee HM; Bhat A; Scholz JP; Galloway JC
    Infant Behav Dev; 2008 Sep; 31(3):447-69. PubMed ID: 18316128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional control of planar human arm movement.
    Gottlieb GL; Song Q; Almeida GL; Hong DA; Corcos D
    J Neurophysiol; 1997 Dec; 78(6):2985-98. PubMed ID: 9405518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-trial adaptation of movement to changes in load.
    Weeks DL; Aubert MP; Feldman AG; Levin MF
    J Neurophysiol; 1996 Jan; 75(1):60-74. PubMed ID: 8822542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical control of different elbow-wrist coordination patterns.
    Dounskaia NV; Swinnen SP; Walter CB; Spaepen AJ; Verschueren SM
    Exp Brain Res; 1998 Aug; 121(3):239-54. PubMed ID: 9746130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of double-joint arm posture in adults with unilateral brain damage.
    Mihaltchev P; Archambault PS; Feldman AG; Levin MF
    Exp Brain Res; 2005 Jun; 163(4):468-86. PubMed ID: 15690154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and kinematic adaptation to anisotropic load.
    Shemmell J; Corcos DM; Hasan Z
    Exp Brain Res; 2009 Jan; 192(1):1-8. PubMed ID: 18726588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An unlearned principle for controlling natural movements.
    Zaal FT; Daigle K; Gottlieb GL; Thelen E
    J Neurophysiol; 1999 Jul; 82(1):255-9. PubMed ID: 10400954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebellar ataxia: torque deficiency or torque mismatch between joints?
    Bastian AJ; Zackowski KM; Thach WT
    J Neurophysiol; 2000 May; 83(5):3019-30. PubMed ID: 10805697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.