These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 9109169)

  • 1. Multiple emulsion based systems for prolonged delivery of rifampicin: in vitro and in vivo characterization.
    Nakhare S; Vyas SP
    Pharmazie; 1997 Mar; 52(3):224-6. PubMed ID: 9109169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple emulsions containing rifampicin.
    Khopade AJ; Jain NK
    Pharmazie; 1999 Dec; 54(12):915-9. PubMed ID: 10631755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on a reverse micelle-lamellar phase transition based depot preparation of rifampicin.
    Uppadhyay AK; Omray LK; Khopade AJ; Jain NK
    Pharmazie; 1997 Dec; 52(12):961-2. PubMed ID: 9442561
    [No Abstract]   [Full Text] [Related]  

  • 4. Potential of nanoemulsions for intravenous delivery of rifampicin.
    Ahmed M; Ramadan W; Rambhu D; Shakeel F
    Pharmazie; 2008 Nov; 63(11):806-11. PubMed ID: 19069240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Tween based microemulsion in the presence of TB drug rifampicin.
    Mehta SK; Kaur G; Bhasin KK
    Colloids Surf B Biointerfaces; 2007 Oct; 60(1):95-104. PubMed ID: 17646089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting of multiple emulsions to the lungs.
    Khopade AJ; Mahadik KR; Jain NK
    Pharmazie; 1996 Aug; 51(8):558-62. PubMed ID: 8794466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gelatin nanocarriers as potential vectors for effective management of tuberculosis.
    Saraogi GK; Gupta P; Gupta UD; Jain NK; Agrawal GP
    Int J Pharm; 2010 Jan; 385(1-2):143-9. PubMed ID: 19819315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prolonged release of rifampicin from multiple w/o/w emulsion systems.
    Nakhare S; Vyas SP
    J Microencapsul; 1995; 12(4):409-15. PubMed ID: 8583315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of "in vitro" release and "in vivo" absorption characteristics of rifampicin from ethylcellulose coated nonpareil beads.
    Sreenivasa Rao B; Seshasayana A; Pardha Saradhi SV; Ravi Kumar N; Narayan CP; Ramana Murthy KV
    Int J Pharm; 2001 Nov; 230(1-2):1-9. PubMed ID: 11672951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro-In Vivo Evaluation of Novel Co-spray Dried Rifampicin Phospholipid Lipospheres for Oral Delivery.
    Singh C; Koduri LV; Bhatt TD; Jhamb SS; Mishra V; Gill MS; Suresh S
    AAPS PharmSciTech; 2017 Jan; 18(1):138-146. PubMed ID: 26902373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The incorporation of rifampicin into multilayer and monolayer vesicles (liposomes) of different phosholipid composition].
    Minina AS; Sorokoumova GM; Selishcheva AA; Malikova NM; Kalashnikova TIu; Shvets VI
    Biofizika; 2004; 49(4):674-9. PubMed ID: 15458251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and evaluation of pH-sensitive sodium alginate/chitosan microparticles containing the antituberculosis drug rifampicin.
    Lacerda L; Parize AL; Fávere V; Laranjeira MC; Stulzer HK
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():161-7. PubMed ID: 24863212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implication of biopharmaceutics and pharmacokinetics of rifampicin in variable bioavailability from solid oral dosage forms.
    Agrawal S; Panchagnula R
    Biopharm Drug Dispos; 2005 Nov; 26(8):321-34. PubMed ID: 16059874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo/in vitro pharmacokinetic and pharmacodynamic study of spray-dried poly-(dl-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid.
    Booysen LL; Kalombo L; Brooks E; Hansen R; Gilliland J; Gruppo V; Lungenhofer P; Semete-Makokotlela B; Swai HS; Kotze AF; Lenaerts A; du Plessis LH
    Int J Pharm; 2013 Feb; 444(1-2):10-7. PubMed ID: 23357255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solidified SNEDDS for the oral delivery of rifampicin: Evaluation, proof of concept, in vivo kinetics, and in silico GastroPlus
    Hussain A; Shakeel F; Singh SK; Alsarra IA; Faruk A; Alanazi FK; Peter Christoper GV
    Int J Pharm; 2019 Jul; 566():203-217. PubMed ID: 31132448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulation of novel sustained release rifampicin-loaded solid lipid microparticles based on structured lipid matrices from Moringa oleifera.
    Onyishi IV; Chime SA; Ogudiegwu EO
    Pharm Dev Technol; 2015; 20(5):546-54. PubMed ID: 24964095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A fiber optic chemical sensor system for on-line monitoring the drug dissolution of rifampicin].
    Li XX; Wang YW; Wang Y; Chen J
    Yao Xue Xue Bao; 2002 Sep; 37(9):721-3. PubMed ID: 12567899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery.
    Doan TV; Couet W; Olivier JC
    Int J Pharm; 2011 Jul; 414(1-2):112-7. PubMed ID: 21596123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gelrite microgels for sustained oral drug delivery-formulation and evaluation.
    Rastogi R; Aqil M; Ali A; Sultana Y
    Curr Drug Deliv; 2008 Apr; 5(2):97-101. PubMed ID: 18393810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro controlled release of Rifampicin through liquid-crystalline folate nanoparticles.
    Parmar R; Misra R; Mohanty S
    Colloids Surf B Biointerfaces; 2015 May; 129():198-205. PubMed ID: 25863713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.