These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 9109354)

  • 41. On-chip integrated hydrolysis, fluorescent labeling, and electrophoretic separation utilized for acetylcholinesterase assay.
    Heleg-Shabtai V; Gratziany N; Liron Z
    Anal Chim Acta; 2006 Jul; 571(2):228-34. PubMed ID: 17723443
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Capillary-driven multiparametric microfluidic chips for one-step immunoassays.
    Gervais L; Hitzbleck M; Delamarche E
    Biosens Bioelectron; 2011 Sep; 27(1):64-70. PubMed ID: 21752632
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of Na(+)-dependent L-glutamate transport in canine erythrocytes.
    Sato K; Inaba M; Maede Y
    Biochim Biophys Acta; 1994 Nov; 1195(2):211-7. PubMed ID: 7947912
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pressure-actuated microfluidic devices for electrophoretic separation of pre-term birth biomarkers.
    Sahore V; Kumar S; Rogers CI; Jensen JK; Sonker M; Woolley AT
    Anal Bioanal Chem; 2016 Jan; 408(2):599-607. PubMed ID: 26537925
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Poly(dimethylsiloxane) microchip for precolumn reaction and micellar electrokinetic chromatography of biogenic amines.
    Ro KW; Lim K; Kim H; Hahn JH
    Electrophoresis; 2002 Apr; 23(7-8):1129-37. PubMed ID: 11981862
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Integration of valving and sensing on a capillary-assembled microchip.
    Hisamoto H; Funano S; Terabe S
    Anal Chem; 2005 Apr; 77(7):2266-71. PubMed ID: 15801763
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrical forces for microscale cell manipulation.
    Voldman J
    Annu Rev Biomed Eng; 2006; 8():425-54. PubMed ID: 16834563
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel instrument for studying the flow behaviour of erythrocytes through microchannels simulating human blood capillaries.
    Sutton N; Tracey MC; Johnston ID; Greenaway RS; Rampling MW
    Microvasc Res; 1997 May; 53(3):272-81. PubMed ID: 9211405
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection.
    Beyor N; Seo TS; Liu P; Mathies RA
    Biomed Microdevices; 2008 Dec; 10(6):909. PubMed ID: 18677651
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Continuous microfluidic DNA extraction using phase-transfer magnetophoresis.
    Karle M; Miwa J; Czilwik G; Auwärter V; Roth G; Zengerle R; von Stetten F
    Lab Chip; 2010 Dec; 10(23):3284-90. PubMed ID: 20938545
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microfluidic chip toward cellular ATP and ATP-conjugated metabolic analysis with bioluminescence detection.
    Liu BF; Ozaki M; Hisamoto H; Luo Q; Utsumi Y; Hattori T; Terabe S
    Anal Chem; 2005 Jan; 77(2):573-8. PubMed ID: 15649055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biochemical analysis with microfluidic systems.
    Bilitewski U; Genrich M; Kadow S; Mersal G
    Anal Bioanal Chem; 2003 Oct; 377(3):556-69. PubMed ID: 14504677
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computer simulations of electrokinetic transport in microfabricated channel structures.
    Ermakov SV; Jacobson SC; Ramsey JM
    Anal Chem; 1998 Nov; 70(21):4494-504. PubMed ID: 21644694
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Velocity measurement of particles flowing in a microfluidic chip using Shah convolution Fourier transform detection.
    Kwok YC; Jeffery NT; Manz A
    Anal Chem; 2001 Apr; 73(8):1748-53. PubMed ID: 11338588
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of a mitochondrial transporter for pyrimidine nucleotides in Saccharomyces cerevisiae: bacterial expression, reconstitution and functional characterization.
    Marobbio CM; Di Noia MA; Palmieri F
    Biochem J; 2006 Jan; 393(Pt 2):441-6. PubMed ID: 16194150
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae.
    Lee WJ; Kim MD; Ryu YW; Bisson LF; Seo JH
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):186-91. PubMed ID: 12382062
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessment of cell viability after manipulation with insulator-based dielectrophoresis.
    LaLonde A; Romero-Creel MF; Lapizco-Encinas BH
    Electrophoresis; 2015 Jul; 36(13):1479-84. PubMed ID: 25146481
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carbon nanotubes integrated in electrically insulated channels for lab-on-a-chip applications.
    Mogensen KB; Gangloff L; Boggild P; Teo KB; Milne WI; Kutter JP
    Nanotechnology; 2009 Mar; 20(9):095503. PubMed ID: 19417490
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Integration of laminar flow extraction and capillary electrophoretic separation in one microfluidic chip for detection of plant alkaloids in blood samples.
    Hu Y; Peng H; Yan Y; Guan S; Wang S; Li PCH; Sun Y
    Anal Chim Acta; 2017 Sep; 985():121-128. PubMed ID: 28864182
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of Off-Stoichiometry Microfluidic Devices for Bioanalytical Applications.
    de Campos RPS; Campos CDM; Almeida GB; da Silva JAF
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1470-1477. PubMed ID: 29293428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.