These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9109565)

  • 21. The effect of intramedullary polymethylmethacrylate on healing of intercalary cortical allografts in a canine model.
    Straw RC; Powers BE; Withrow SJ; Cooper MF; Turner AS
    J Orthop Res; 1992 May; 10(3):434-9. PubMed ID: 1569506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterizing bone strain distributions in vivo using three triple rosette strain gages.
    Gross TS; McLeod KJ; Rubin CT
    J Biomech; 1992 Sep; 25(9):1081-7. PubMed ID: 1517269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long bone torsion: II. A combined experimental and computational method for determining an effective shear modulus.
    Kennedy JG; Carter DR; Caler WE
    J Biomech Eng; 1985 May; 107(2):189-91. PubMed ID: 3999716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An implantable strain measurement system designed to detect spine fusion: preliminary results from a biomechanical in vivo study.
    Szivek JA; Roberto RF; Slack JM; Majeed BS
    Spine (Phila Pa 1976); 2002 Mar; 27(5):487-97. PubMed ID: 11880834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fibre optic Bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone.
    Fresvig T; Ludvigsen P; Steen H; Reikerås O
    Med Eng Phys; 2008 Jan; 30(1):104-8. PubMed ID: 17369073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new bioactive bone cement: its histological and mechanical characterization.
    Nishimura N; Yamamuro T; Taguchi Y; Ikenaga M; Nakamura T; Kokubo T; Yoshihara S
    J Appl Biomater; 1991; 2(4):219-29. PubMed ID: 10149398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental determination of whole long bone sectional properties.
    Gies AA; Carter DR
    J Biomech; 1982; 15(4):297-303. PubMed ID: 7096384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elastic properties and masticatory bone stress in the macaque mandible.
    Dechow PC; Hylander WL
    Am J Phys Anthropol; 2000 Aug; 112(4):553-74. PubMed ID: 10918129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Bone cements based on polymethylmethacrylate].
    Breusch SJ; Kühn KD
    Orthopade; 2003 Jan; 32(1):41-50. PubMed ID: 12557085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone bonding through bioadhesives: present status.
    Meyer G; Muster D; Schmitt D; Jung P; Jaeger JH
    Biomater Med Devices Artif Organs; 1979; 7(1):55-71. PubMed ID: 454783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elastic constants of composites formed from PMMA bone cement and anisotropic bovine tibial cancellous bone.
    Williams JL; Johnson WJ
    J Biomech; 1989; 22(6-7):673-82. PubMed ID: 2808448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical Comparison of Expansive Pedicle Screw and Polymethylmethacrylate-augmented Pedicle Screw in Osteoporotic Synthetic Bone in Primary Implantation: An Experimental Study.
    Liu D; Shi L; Lei W; Wei MQ; Qu B; Deng SL; Pan XM
    Clin Spine Surg; 2016 Aug; 29(7):E351-7. PubMed ID: 27137160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short- and long-term effects of vertebroplastic bone cement on cancellous bone.
    Quan R; Ni Y; Zhang L; Xu J; Zheng X; Yang D
    J Mech Behav Biomed Mater; 2014 Jul; 35():102-10. PubMed ID: 24762857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Mechanical properties of bonding between cancellous bone and polymethylmetacrylate. I. Tensile strength].
    Kölbel R; Boenick U
    Arch Orthop Unfallchir; 1972; 73(1):89-97. PubMed ID: 5076190
    [No Abstract]   [Full Text] [Related]  

  • 35. Direct in vivo strain measurements in human bone-a systematic literature review.
    Al Nazer R; Lanovaz J; Kawalilak C; Johnston JD; Kontulainen S
    J Biomech; 2012 Jan; 45(1):27-40. PubMed ID: 21889149
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A preliminary biomechanical assessment of a polymer composite hip implant using an infrared thermography technique validated by strain gage measurements.
    Bougherara H; Rahim E; Shah S; Dubov A; Schemitsch EH; Zdero R
    J Biomech Eng; 2011 Jul; 133(7):074503. PubMed ID: 21823752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The measurement of bone strain "in vivo".
    Lanyon LE
    Acta Orthop Belg; 1976; 42 Suppl 1():98-108. PubMed ID: 1029373
    [No Abstract]   [Full Text] [Related]  

  • 38. Effect of the degree of osteoporosis on the biomechanical anchoring strength of the sacral pedicle screws: an in vitro comparison between unaugmented bicortical screws and polymethylmethacrylate augmented unicortical screws.
    Zhuang XM; Yu BS; Zheng ZM; Zhang JF; Lu WW
    Spine (Phila Pa 1976); 2010 Sep; 35(19):E925-31. PubMed ID: 20098349
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-contacting electrode system for the measurement of strain generated potentials in bone.
    Hastings GW; Mahmud FA; Martini M
    J Biomed Eng; 1989 Sep; 11(5):403-8. PubMed ID: 2796320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.