These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9109665)

  • 21. [The effect of pyridoxal phosphate on the tryptophanases of five species of Enterobacteriaceae].
    Simard C; Mardini A; Bordeleau LM
    Can J Microbiol; 1975 Jun; 21(6):834-40. PubMed ID: 238730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of a conserved arginine near the active site of Escherichia coli D-serine dehydratase to cofactor affinity and catalytic activity.
    Marceau M; Lewis SD; Kojiro CL; Shafer JA
    J Biol Chem; 1989 Feb; 264(5):2753-7. PubMed ID: 2644271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mining the cellular inventory of pyridoxal phosphate-dependent enzymes with functionalized cofactor mimics.
    Hoegl A; Nodwell MB; Kirsch VC; Bach NC; Pfanzelt M; Stahl M; Schneider S; Sieber SA
    Nat Chem; 2018 Dec; 10(12):1234-1245. PubMed ID: 30297752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorus-31 nuclear magnetic resonance study of D-serine dehydratase: pryridoxal phosphate binding site.
    Schnackerz KD; Feldmann K; Hull WE
    Biochemistry; 1979 Apr; 18(8):1536-9. PubMed ID: 34429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Substitution of glutamine for lysine at the pyridoxal phosphate binding site of bacterial D-amino acid transaminase. Effects of exogenous amines on the slow formation of intermediates.
    Futaki S; Ueno H; Martinez del Pozo A; Pospischil MA; Manning JM; Ringe D; Stoddard B; Tanizawa K; Yoshimura T; Soda K
    J Biol Chem; 1990 Dec; 265(36):22306-12. PubMed ID: 2125047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of substitution of a lysyl residue that binds pyridoxal phosphate in thermostable D-amino acid aminotransferase by arginine and alanine.
    Nishimura K; Tanizawa K; Yoshimura T; Esaki N; Futaki S; Manning JM; Soda K
    Biochemistry; 1991 Apr; 30(16):4072-7. PubMed ID: 1902115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The translation initiation site of recombinant Trypanosoma brucei ornithine decarboxylase varies with different promoters.
    Kuntz DA; Phillips MA; Moore TD; Craig SP; Bass KE; Wang CC
    Mol Biochem Parasitol; 1992 Oct; 55(1-2):95-104. PubMed ID: 1435879
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of tryptophan 248 in the active site of tryptophanase from Escherichia coli.
    Kawata Y; Tsujimoto N; Tani S; Mizobata T; Tokushige M
    Biochem Biophys Res Commun; 1990 Dec; 173(2):756-62. PubMed ID: 2260981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Reactivation and reconstitution of glutamate decarboxylase upon the interaction of its dimers with pyridoxal phosphate].
    DariÄ­ EL; Sukhareva BS
    Biokhimiia; 1992 Apr; 57(4):574-81. PubMed ID: 1637919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Interaction of spin-labeled analogues of vitamin B 6 with the active site of apotransaminase].
    Misharin AIu; polianovskiÄ­ OL; Timofeev VP
    Mol Biol (Mosk); 1975; 9(1):113-20. PubMed ID: 176569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymatic properties of ornithine decarboxylase from Clostridium aceticum DSM1496.
    Tan Q; Gou L; Fan TP; Cai Y
    Biotechnol Appl Biochem; 2024 Jun; 71(3):525-535. PubMed ID: 38225812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Allosteric activation by purine nucleosides and nucleotides of the inactive by phosphatase ornithine decarboxylase of Tetrahymena pyriformis.
    Lougovoi CP; Kyriakidis DA
    Biochem Int; 1988 Feb; 16(2):209-17. PubMed ID: 3130058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning and sequencing of the ornithine decarboxylase gene from Trypanosoma brucei. Implications for enzyme turnover and selective difluoromethylornithine inhibition.
    Phillips MA; Coffino P; Wang CC
    J Biol Chem; 1987 Jun; 262(18):8721-7. PubMed ID: 3036823
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of arginine decarboxylase activity from Mycobacterium smegmatis. Evidence for pyridoxal-5'-phosphate-mediated conformational changes in the enzyme.
    Balasundaram D; Tyagi AK
    Eur J Biochem; 1989 Aug; 183(2):339-45. PubMed ID: 2667997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trypanosoma brucei ornithine decarboxylase: enzyme purification, characterization, and expression in Escherichia coli.
    Phillips MA; Coffino P; Wang CC
    J Biol Chem; 1988 Dec; 263(34):17933-41. PubMed ID: 3056933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Interaction of pyridoxal-5-phosphate with human serum albumin and pancreatic ribonuclease].
    Moroz AR; Kondakov VI; Stepuro II; Iaroshevich NA
    Biokhimiia; 1987 Apr; 52(4):550-61. PubMed ID: 3593789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The pyridoxal 5' -phosphate site in rabbit skeletal muscle glycogen phosphorylase b: an ultraviolet and 1H and 31P nuclear magnetic resonance spectroscopic study.
    Feldmann K; Helmreich EJ
    Biochemistry; 1976 Jun; 15(11):2394-401. PubMed ID: 1276147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 31P nuclear-magnetic-resonance studies of pyridoxal and pyridoxamine phosphates. Interaction with cytoplasmic aspartate transaminase.
    Martinez-Carrion M
    Eur J Biochem; 1975 May; 54(1):39-43. PubMed ID: 238848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mode of binding of pyridoxal phosphate to 5-aminolevulinate synthase.
    Nandi DL
    Z Naturforsch C Biosci; 1978; 33(11-12):1003-5. PubMed ID: 154217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradative ornithine decarboxylase of Escherichia coli. Purification, properties, and pyridoxal 5'-phosphate binding site.
    Applebaum D; Sabo DL; Fischer EH; Morris DR
    Biochemistry; 1975 Aug; 14(16):3675-81. PubMed ID: 240388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.