These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 9109665)

  • 41. L-ornithine decarboxylase from Hafnia alvei has a novel L-ornithine oxidase activity.
    Sakai K; Miyasako Y; Nagatomo H; Watanabe H; Wakayama M; Moriguchi M
    J Biochem; 1997 Nov; 122(5):961-8. PubMed ID: 9443811
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural elements of ornithine decarboxylase required for intracellular degradation and polyamine-dependent regulation.
    Ghoda L; Sidney D; Macrae M; Coffino P
    Mol Cell Biol; 1992 May; 12(5):2178-85. PubMed ID: 1569947
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of Glu51 for cofactor binding and catalytic activity in pyruvate decarboxylase from yeast studied by site-directed mutagenesis.
    Killenberg-Jabs M; König S; Eberhardt I; Hohmann S; Hübner G
    Biochemistry; 1997 Feb; 36(7):1900-5. PubMed ID: 9048576
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The regulation of mouse liver ornithine decarboxylase by metabolites.
    Morley CG; Ho H
    Biochim Biophys Acta; 1976 Jul; 438(2):551-62. PubMed ID: 952946
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The crystal structure of Citrobacter freundii tyrosine phenol-lyase complexed with 3-(4'-hydroxyphenyl)propionic acid, together with site-directed mutagenesis and kinetic analysis, demonstrates that arginine 381 is required for substrate specificity.
    Sundararaju B; Antson AA; Phillips RS; Demidkina TV; Barbolina MV; Gollnick P; Dodson GG; Wilson KS
    Biochemistry; 1997 May; 36(21):6502-10. PubMed ID: 9174368
    [TBL] [Abstract][Full Text] [Related]  

  • 46. pH dependence of the absorbance and 31P NMR spectra of O-acetylserine sulfhydrylase in the absence and presence of O-acetyl-L-serine.
    Cook PF; Hara S; Nalabolu S; Schnackerz KD
    Biochemistry; 1992 Mar; 31(8):2298-303. PubMed ID: 1540585
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Trypanosome ornithine decarboxylase is stable because it lacks sequences found in the carboxyl terminus of the mouse enzyme which target the latter for intracellular degradation.
    Ghoda L; Phillips MA; Bass KE; Wang CC; Coffino P
    J Biol Chem; 1990 Jul; 265(20):11823-6. PubMed ID: 2365702
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling of the spatial structure of eukaryotic ornithine decarboxylases.
    Grishin NV; Phillips MA; Goldsmith EJ
    Protein Sci; 1995 Jul; 4(7):1291-304. PubMed ID: 7670372
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Resolution of beta-cyanoalanine synthase and recombination of its apoenzyme with pyridoxal-5'-phosphate and its analogs].
    Rabinkov AG; Tolosa EA; Goriachenkova EV
    Biokhimiia; 1978 Sep; 43(9):1674-9. PubMed ID: 719071
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mouse ornithine decarboxylase is stable in Trypanosoma brucei.
    Bass KE; Sommer JM; Cheng QL; Wang CC
    J Biol Chem; 1992 Jun; 267(16):11034-7. PubMed ID: 1597444
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 113Cd NMR of Cd(II)-substituted Zn(II) metalloenzymes.
    Gettins P; Coleman JE
    Fed Proc; 1982 Nov; 41(13):2966-73. PubMed ID: 7140997
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The mode of binding of pyridoxal 5'-phosphate in rabbit muscle glycogen phosphorylase b: circular dichroism and absorption studies.
    Shimomura S; Fukui T
    J Biochem; 1977 Jun; 81(6):1781-90. PubMed ID: 893372
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Binding of new PLP analogs to the catalytic domain of GABA transaminase.
    Choi SY; Churchich DR; Churchich JE
    Biochem Biophys Res Commun; 1985 Feb; 127(1):346-53. PubMed ID: 3838474
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [The effect of pyridoxal phosphate on the tryptophanases of five species of Enterobacteriaceae].
    Simard C; Mardini A; Bordeleau LM
    Can J Microbiol; 1975 Jun; 21(6):834-40. PubMed ID: 238730
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contribution of a conserved arginine near the active site of Escherichia coli D-serine dehydratase to cofactor affinity and catalytic activity.
    Marceau M; Lewis SD; Kojiro CL; Shafer JA
    J Biol Chem; 1989 Feb; 264(5):2753-7. PubMed ID: 2644271
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of His-134, -147, and -150 residues in subunit assembly, cofactor binding, and catalysis of sheep liver cytosolic serine hydroxymethyltransferase.
    Jagath JR; Sharma B; Rao NA; Savithri HS
    J Biol Chem; 1997 Sep; 272(39):24355-62. PubMed ID: 9305893
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mining the cellular inventory of pyridoxal phosphate-dependent enzymes with functionalized cofactor mimics.
    Hoegl A; Nodwell MB; Kirsch VC; Bach NC; Pfanzelt M; Stahl M; Schneider S; Sieber SA
    Nat Chem; 2018 Dec; 10(12):1234-1245. PubMed ID: 30297752
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibitory effect of pyridoxal 5'-phosphate on the DNA binding site of ATP-dependent deoxyribonuclease from Bacillus laterosporus.
    Fujiyoshi T; Nakayama J; Anai M
    J Biochem; 1981 Apr; 89(4):1137-42. PubMed ID: 6265433
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Serine hydroxymethyltransferase. 31P nuclear magnetic resonance study of the enzyme-bound pyridoxal 5'-phosphate.
    Quashnock JM; Chlebowski JF; Martinez-Carrion M; Schirch L
    J Biol Chem; 1983 Jan; 258(1):503-7. PubMed ID: 6848517
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phosphorus-31 nuclear magnetic resonance study of D-serine dehydratase: pryridoxal phosphate binding site.
    Schnackerz KD; Feldmann K; Hull WE
    Biochemistry; 1979 Apr; 18(8):1536-9. PubMed ID: 34429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.