These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 9109666)
1. Roles of aspartic acid-181 and serine-222 in intermediate formation and hydrolysis of the mammalian protein-tyrosine-phosphatase PTP1. Lohse DL; Denu JM; Santoro N; Dixon JE Biochemistry; 1997 Apr; 36(15):4568-75. PubMed ID: 9109666 [TBL] [Abstract][Full Text] [Related]
2. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Karsten WE; Liu D; Rao GS; Harris BG; Cook PF Biochemistry; 2005 Mar; 44(9):3626-35. PubMed ID: 15736972 [TBL] [Abstract][Full Text] [Related]
3. Probing the function of Asp128 in the lower molecular weight protein-tyrosine phosphatase-catalyzed reaction. A pre-steady-state and steady-state kinetic investigation. Wu L; Zhang ZY Biochemistry; 1996 Apr; 35(17):5426-34. PubMed ID: 8611532 [TBL] [Abstract][Full Text] [Related]
4. Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Denu JM; Lohse DL; Vijayalakshmi J; Saper MA; Dixon JE Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2493-8. PubMed ID: 8637902 [TBL] [Abstract][Full Text] [Related]
5. Site-directed mutagenesis, kinetic, and spectroscopic studies of the P-loop residues in a low molecular weight protein tyrosine phosphatase. Evans B; Tishmack PA; Pokalsky C; Zhang M; Van Etten RL Biochemistry; 1996 Oct; 35(42):13609-17. PubMed ID: 8885840 [TBL] [Abstract][Full Text] [Related]
6. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis. Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850 [TBL] [Abstract][Full Text] [Related]
7. Acid-base catalysis in Leuconostoc mesenteroides sucrose phosphorylase probed by site-directed mutagenesis and detailed kinetic comparison of wild-type and Glu237-->Gln mutant enzymes. Schwarz A; Brecker L; Nidetzky B Biochem J; 2007 May; 403(3):441-9. PubMed ID: 17233628 [TBL] [Abstract][Full Text] [Related]
8. Role of aspartate-133 and histidine-458 in the mechanism of tryptophan indole-lyase from Proteus vulgaris. Demidkina TV; Zakomirdina LN; Kulikova VV; Dementieva IS; Faleev NG; Ronda L; Mozzarelli A; Gollnick PD; Phillips RS Biochemistry; 2003 Sep; 42(38):11161-9. PubMed ID: 14503866 [TBL] [Abstract][Full Text] [Related]
9. Conformational and dynamic changes of Yersinia protein tyrosine phosphatase induced by ligand binding and active site mutation and revealed by H/D exchange and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Wang F; Li W; Emmett MR; Hendrickson CL; Marshall AG; Zhang YL; Wu L; Zhang ZY Biochemistry; 1998 Nov; 37(44):15289-99. PubMed ID: 9799489 [TBL] [Abstract][Full Text] [Related]
10. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study. Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of the reaction catalyzed by isoaspartyl dipeptidase from Escherichia coli. MartÃ-Arbona R; Fresquet V; Thoden JB; Davis ML; Holden HM; Raushel FM Biochemistry; 2005 May; 44(19):7115-24. PubMed ID: 15882050 [TBL] [Abstract][Full Text] [Related]
12. Computational and mutational analysis of human glutaredoxin (thioltransferase): probing the molecular basis of the low pKa of cysteine 22 and its role in catalysis. Jao SC; English Ospina SM; Berdis AJ; Starke DW; Post CB; Mieyal JJ Biochemistry; 2006 Apr; 45(15):4785-96. PubMed ID: 16605247 [TBL] [Abstract][Full Text] [Related]
13. Catalytic mechanism of hamster arylamine N-acetyltransferase 2. Wang H; Liu L; Hanna PE; Wagner CR Biochemistry; 2005 Aug; 44(33):11295-306. PubMed ID: 16101314 [TBL] [Abstract][Full Text] [Related]
14. On the catalytic role of the conserved active site residue His466 of choline oxidase. Ghanem M; Gadda G Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745 [TBL] [Abstract][Full Text] [Related]
15. Mutational, structural, and kinetic evidence for a dissociative mechanism in the GDP-mannose mannosyl hydrolase reaction. Xia Z; Azurmendi HF; Lairson LL; Withers SG; Gabelli SB; Bianchet MA; Amzel LM; Mildvan AS Biochemistry; 2005 Jun; 44(25):8989-97. PubMed ID: 15966723 [TBL] [Abstract][Full Text] [Related]
16. Evidence that serine 304 is not a key ligand-binding residue in the active site of cytochrome P450 2D6. Ellis SW; Hayhurst GP; Lightfoot T; Smith G; Harlow J; Rowland-Yeo K; Larsson C; Mahling J; Lim CK; Wolf CR; Blackburn MG; Lennard MS; Tucker GT Biochem J; 2000 Feb; 345 Pt 3(Pt 3):565-71. PubMed ID: 10642515 [TBL] [Abstract][Full Text] [Related]
17. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252 [TBL] [Abstract][Full Text] [Related]
18. VHR and PTP1 protein phosphatases exhibit remarkably different active site specificities toward low molecular weight nonpeptidic substrates. Chen L; Montserat J; Lawrence DS; Zhang ZY Biochemistry; 1996 Jul; 35(29):9349-54. PubMed ID: 8755712 [TBL] [Abstract][Full Text] [Related]
19. Roles of active site residues in Pseudomonas aeruginosa phosphomannomutase/phosphoglucomutase. Naught LE; Regni C; Beamer LJ; Tipton PA Biochemistry; 2003 Aug; 42(33):9946-51. PubMed ID: 12924943 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic roles of tyrosine 149 and serine 124 in UDP-galactose 4-epimerase from Escherichia coli. Liu Y; Thoden JB; Kim J; Berger E; Gulick AM; Ruzicka FJ; Holden HM; Frey PA Biochemistry; 1997 Sep; 36(35):10675-84. PubMed ID: 9271498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]