These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9110181)

  • 1. Incorporation of 2-hydroxyl fatty acids by Acinetobacter calcoaceticus RAG-1 to tailor emulsan structure.
    Zhang J; Gorkovenko A; Gross RA; Allen AL; Kaplan D
    Int J Biol Macromol; 1997 Feb; 20(1):9-21. PubMed ID: 9110181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioengineering of emulsifier structure: emulsan analogs.
    Gorkovenko A; Zhang J; Gross RA; Allen AL; Kaplan DL
    Can J Microbiol; 1997 Apr; 43(4):384-90. PubMed ID: 9115094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioengineered emulsans from Acinetobacter calcoaceticusRAG-1 transposon mutants.
    Johri AK; Blank W; Kaplan DL
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):217-23. PubMed ID: 12111149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological modification of the fatty acid group in an emulsan by supplementing fatty acids under conditions inhibiting fatty acid biosynthesis.
    Kim P; Oh DK; Lee JK; Kim SY; Kim JH
    J Biosci Bioeng; 2000; 90(3):308-12. PubMed ID: 16232861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The glucose dehydrogenase-mediated energization of Acinetobacter calcoaceticus as a tool for evaluating its susceptibility to, and defence against, hazardous chemicals.
    Loffhagen N; Härtig C; Babel W
    Appl Microbiol Biotechnol; 1995 Jan; 42(5):738-43. PubMed ID: 7765916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emulsan production by Acinetobacter calcoaceticus in the presence of chloramphenicol.
    Rubinovitz C; Gutnick DL; Rosenberg E
    J Bacteriol; 1982 Oct; 152(1):126-32. PubMed ID: 6896872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Horizontal transfer of an exopolymer complex from one bacterial species to another.
    Osterreicher-Ravid D; Ron EZ; Rosenberg E
    Environ Microbiol; 2000 Aug; 2(4):366-72. PubMed ID: 11234924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of monensin and vitamin E on milk production and composition of lactating dairy cows.
    Khodamoradi Sh; Fatahnia F; Taherpour K; Pirani V; Rashidi L; Azarfar A
    J Anim Physiol Anim Nutr (Berl); 2013 Aug; 97(4):666-74. PubMed ID: 22533457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial degradation of emulsan.
    Shoham Y; Rosenberg M; Rosenberg E
    Appl Environ Microbiol; 1983 Sep; 46(3):573-9. PubMed ID: 6688940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatty acid profile of the milk of cows reared in the mountain region of Poland.
    Rutkowska J; Adamska A; Bialek M
    J Dairy Res; 2012 Nov; 79(4):469-76. PubMed ID: 23089265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acid and hydroxy acid adaptation in three gram-negative hydrocarbon-degrading bacteria in relation to carbon source.
    Soltani M; Metzger P; Largeau C
    Lipids; 2005 Dec; 40(12):1263-72. PubMed ID: 16477811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aedes aegypti (Diptera: Culicidae) biting deterrence: structure-activity relationship of saturated and unsaturated fatty acids.
    Ali A; Cantrell CL; Bernier UR; Duke SO; Schneider JC; Agramonte NM; Khan I
    J Med Entomol; 2012 Nov; 49(6):1370-8. PubMed ID: 23270165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular fatty acids as chemical markers for differentiation of Acinetobacter baumannii and Acinetobacter calcoaceticus.
    Yang C; Guo ZB; Du ZM; Yang HY; Bi YJ; Wang GQ; Tan YF
    Biomed Environ Sci; 2012 Dec; 25(6):711-7. PubMed ID: 23228842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of corn silage harvest maturity and concentrate type on milk fatty acid composition of dairy cows.
    Khan NA; Tewoldebrhan TA; Zom RL; Cone JW; Hendriks WH
    J Dairy Sci; 2012 Mar; 95(3):1472-83. PubMed ID: 22365229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Milk saturated fatty acids, odd- and branched-chain fatty acids, and isomers of C18:1, C18:2, and C18:3n-3 according to their duodenal flows in dairy cows: A meta-analysis approach.
    Prado LA; Schmidely P; Nozière P; Ferlay A
    J Dairy Sci; 2019 Apr; 102(4):3053-3070. PubMed ID: 30738686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Interaction of Myoglobin with Select Fatty Acids of Carbon Chain Lengths C8 to C16.
    Jue T; Shih L; Chung Y
    Lipids; 2017 Aug; 52(8):711-727. PubMed ID: 28639182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meta-analysis of relationships between enteric methane yield and milk fatty acid profile in dairy cattle.
    van Lingen HJ; Crompton LA; Hendriks WH; Reynolds CK; Dijkstra J
    J Dairy Sci; 2014 Nov; 97(11):7115-32. PubMed ID: 25218750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exocellular esterase and emulsan release from the cell surface of Acinetobacter calcoaceticus.
    Shabtai Y; Gutnick DL
    J Bacteriol; 1985 Mar; 161(3):1176-81. PubMed ID: 3838301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exogenous myristic acid can be partially degraded prior to activation to form acyl-acyl carrier protein intermediates and lipid A in Vibrio harveyi.
    Shen Z; Byers DM
    J Bacteriol; 1994 Jan; 176(1):77-83. PubMed ID: 8282714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The incorporation of fatty acids of different chain length into liver and biliary lipids in the perfused rat liver.
    Rubin M; Pakula R; Gilat T; Tietz A
    Lipids; 1999 Jun; 34(6):571-8. PubMed ID: 10405970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.