These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9110284)

  • 1. The resistance to flow of individual human neutrophils in glass capillary tubes with diameters between 4.65 and 7.75 microns.
    Shao JY; Hochmuth RM
    Microcirculation; 1997 Mar; 4(1):61-74. PubMed ID: 9110284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow behavior of neonatal and adult erythrocytes in narrow capillaries.
    Stadler A; Linderkamp O
    Microvasc Res; 1989 May; 37(3):267-79. PubMed ID: 2733599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of wall surface on the flow of blood through endothelial-lined glass tubes.
    Fenton BM; Cokelet GR; la Celle PL
    Int J Microcirc Clin Exp; 1982; 1(2):157-62. PubMed ID: 7188505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The viscosity of neutrophils and their transit times through small pores.
    Hochmuth RM; Needham D
    Biorheology; 1990; 27(6):817-28. PubMed ID: 2093391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow behavior of fetal, neonatal and adult RBCs in narrow (3-6 μm) capillaries--Calculation and experimental application.
    Ruef P; Stadler AA; Poeschl J
    Clin Hemorheol Microcirc; 2014; 58(2):317-31. PubMed ID: 23313873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The physics of blood flood in capillaries. II. The capillary resistance to flow.
    PROTHERO JW; BURTON AC
    Biophys J; 1962 Mar; 2(2 Pt 1):199-212. PubMed ID: 14488986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid flow of passive neutrophils into a 4 microns pipet and measurement of cytoplasmic viscosity.
    Needham D; Hochmuth RM
    J Biomech Eng; 1990 Aug; 112(3):269-76. PubMed ID: 2214708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The behavior of human neutrophils during flow through capillary pores.
    Frank RS; Tsai MA
    J Biomech Eng; 1990 Aug; 112(3):277-82. PubMed ID: 2214709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of capillary flow resistance upon the width of the marginal layer and the viscosity of the axial core.
    Braasch D
    Biorheology Suppl; 1984; 1():135-43. PubMed ID: 6591966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local application of adenosine induces an increase of capillary diameter in skeletal muscle of anesthetized rabbits.
    Bosman J; Tangelder GJ; oude Egbrink MG; Reneman RS; Slaaf DW
    J Vasc Res; 1996; 33(2):111-8. PubMed ID: 8630343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for red blood cell motion in glycocalyx-lined capillaries.
    Secomb TW; Hsu R; Pries AR
    Am J Physiol; 1998 Mar; 274(3):H1016-22. PubMed ID: 9530216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient rheological behavior of blood in low-shear tube flow: velocity profiles and effective viscosity.
    Alonso C; Pries AR; Kiesslich O; Lerche D; Gaehtgens P
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H25-32. PubMed ID: 7840268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertial capillary uptake of drops.
    Willmott GR; Briole A; Szczepaniak F
    Phys Rev E; 2020 Apr; 101(4-1):043109. PubMed ID: 32422711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries.
    Vink H; Duling BR
    Circ Res; 1996 Sep; 79(3):581-9. PubMed ID: 8781491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo measurement of red cell velocity with epi- and transillumination.
    Harper SL; Bohlen HG
    Microvasc Res; 1983 Mar; 25(2):186-93. PubMed ID: 6843372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes.
    Gaehtgens P; Dührssen C; Albrecht KH
    Blood Cells; 1980; 6(4):799-817. PubMed ID: 7470632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood viscosity and optimal hematocrit in narrow tubes.
    Stadler AA; Zilow EP; Linderkamp O
    Biorheology; 1990; 27(5):779-88. PubMed ID: 2271768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of volumetric flow in capillary tubes using an optical Doppler velocimeter.
    Davis MJ
    Microvasc Res; 1987 Sep; 34(2):223-30. PubMed ID: 2959844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter.
    Reinke W; Johnson PC; Gaehtgens P
    Circ Res; 1986 Aug; 59(2):124-32. PubMed ID: 3742742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.