These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9110436)

  • 1. Fourier-transform Raman spectroscopy of mammalian and avian keratotic biopolymers.
    Akhtar W; Edwards HG
    Spectrochim Acta A Mol Biomol Spectrosc; 1997 Jan; 53A(1):81-90. PubMed ID: 9110436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FT-Raman spectroscopic study of keratotic materials: horn, hoof and tortoiseshell.
    Edwards HG; Hunt DE; Sibley MG
    Spectrochim Acta A Mol Biomol Spectrosc; 1998 May; 54A(5):745-57. PubMed ID: 9679318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourier-transform Raman spectroscopic study of human hair.
    Akhtar W; Edwards HG; Farwell DW; Nutbrown M
    Spectrochim Acta A Mol Biomol Spectrosc; 1997 Jul; 53A(7):1021-31. PubMed ID: 9219374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydration of human nails investigated by NIR-FT-Raman spectroscopy.
    Wessel S; Gniadecka M; Jemec GB; Wulf HC
    Biochim Biophys Acta; 1999 Aug; 1433(1-2):210-6. PubMed ID: 10446373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The molecular structure of reptilian keratin.
    Fraser RD; Parry DA
    Int J Biol Macromol; 1996 Oct; 19(3):207-11. PubMed ID: 8910061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of water, proteins, and lipids in intact human skin, hair, and nail.
    Gniadecka M; Faurskov Nielsen O; Christensen DH; Wulf HC
    J Invest Dermatol; 1998 Apr; 110(4):393-8. PubMed ID: 9540981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Keratin orientation in wool and feathers by polarized raman spectroscopy.
    Rintoul L; Carter EA; Stewart SD; Fredericks PM
    Biopolymers; 2000; 57(1):19-28. PubMed ID: 10679636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scale keratin in lizard epidermis reveals amino acid regions homologous with avian and mammalian epidermal proteins.
    Alibardi L; Dalla Valle L; Toffolo V; Toni M
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Jul; 288(7):734-52. PubMed ID: 16761287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The analysis of Merino wool cuticle and cortical cells by Fourier transform Raman spectroscopy.
    Church JS; Corino GL; Woodhead AL
    Biopolymers; 1997; 42(1):7-17. PubMed ID: 9209155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filamentous Structure of Hard β-Keratins in the Epidermal Appendages of Birds and Reptiles.
    Fraser RD; Parry DA
    Subcell Biochem; 2017; 82():231-252. PubMed ID: 28101864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of alkaline-hydrolyzed waterfowl feather keratin.
    Tsuda Y; Nomura Y
    Anim Sci J; 2014 Feb; 85(2):180-5. PubMed ID: 23865627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in nail keratin observed by Raman spectroscopy after Nd:YAG laser treatment.
    Shin MK; Kim TI; Kim WS; Park HK; Kim KS
    Microsc Res Tech; 2017 Apr; 80(4):338-343. PubMed ID: 27481603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopy on the wing: Investigating possible differences in protein secondary structures in feather shafts of birds using Raman spectroscopy.
    Laurent CM; Dyke JM; Cook RB; Dyke G; de Kat R
    J Struct Biol; 2020 Jul; 211(1):107529. PubMed ID: 32416130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal behavior of fowl feather keratin.
    Takahashi K; Yamamoto H; Yokote Y; Hattori M
    Biosci Biotechnol Biochem; 2004 Sep; 68(9):1875-81. PubMed ID: 15388962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioplastics from feather quill.
    Ullah A; Vasanthan T; Bressler D; Elias AL; Wu J
    Biomacromolecules; 2011 Oct; 12(10):3826-32. PubMed ID: 21888378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopic and immunohistochemical analyses of the claw of the nesting dinosaur, Citipati osmolskae.
    Moyer AE; Zheng W; Schweitzer MH
    Proc Biol Sci; 2016 Nov; 283(1842):. PubMed ID: 28120795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using synchrotron-based FTIR microspectroscopy to reveal chemical features of feather protein secondary structure: comparison with other feed protein sources.
    Yu P; McKinnon JJ; Christensen CR; Christensen DA
    J Agric Food Chem; 2004 Dec; 52(24):7353-61. PubMed ID: 15563219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microanatomy of passerine hard-cornified tissues: beak and claw structure of the black-capped chickadee (Poecile atricapillus).
    Van Hemert C; Handel CM; Blake JE; Swor RM; O'Hara TM
    J Morphol; 2012 Feb; 273(2):226-40. PubMed ID: 22020831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in protein conformation and dynamics upon complex formation of brain-derived neurotrophic factor and its receptor: investigation by isotope-edited Fourier transform IR spectroscopy.
    Li T; Talvenheimo J; Zeni L; Rosenfeld R; Stearns G; Arakawa T
    Biopolymers; 2002; 67(1):10-9. PubMed ID: 11842409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation of differentiation in nail and bovine hoof cells.
    Kitahara T; Ogawa H
    J Invest Dermatol; 1994 May; 102(5):725-9. PubMed ID: 7513739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.