These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9110950)

  • 1. Molecular forces involved in force generation during skeletal muscle contraction.
    Murphy KP; Zhao Y; Kawai M
    J Exp Biol; 1996 Dec; 199(Pt 12):2565-71. PubMed ID: 9110950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of temperature on elementary steps of the cross-bridge cycle in rabbit soleus slow-twitch muscle fibres.
    Wang G; Kawai M
    J Physiol; 2001 Feb; 531(Pt 1):219-34. PubMed ID: 11179405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers.
    Zhao Y; Kawai M
    Biophys J; 1994 Oct; 67(4):1655-68. PubMed ID: 7819497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple- and single-molecule analysis of the actomyosin motor by nanometer-piconewton manipulation with a microneedle: unitary steps and forces.
    Ishijima A; Kojima H; Higuchi H; Harada Y; Funatsu T; Yanagida T
    Biophys J; 1996 Jan; 70(1):383-400. PubMed ID: 8770215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actomyosin interaction in striated muscle.
    Cooke R
    Physiol Rev; 1997 Jul; 77(3):671-97. PubMed ID: 9234962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of ionic strength on the actomyosin reaction steps in contracting skeletal muscle fibers.
    Iwamoto H
    Biophys J; 2000 Jun; 78(6):3138-49. PubMed ID: 10827990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of myosin-driven skeletal muscle contraction: I. Steady-state force generation.
    Lan G; Sun SX
    Biophys J; 2005 Jun; 88(6):4107-17. PubMed ID: 15778440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of muscle contraction based on the Langevin equation with actomyosin potentials.
    Tamura Y; Ito A; Saito M
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):273-283. PubMed ID: 27472485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer.
    Veigel C; Bartoo ML; White DC; Sparrow JC; Molloy JE
    Biophys J; 1998 Sep; 75(3):1424-38. PubMed ID: 9726944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smooth muscle myosin: a high force-generating molecular motor.
    VanBuren P; Guilford WH; Kennedy G; Wu J; Warshaw DM
    Biophys J; 1995 Apr; 68(4 Suppl):256S-258S; 258S-259S. PubMed ID: 7787086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force generation and work production by covalently cross-linked actin-myosin cross-bridges in rabbit muscle fibers.
    Bershitsky SY; Tsaturyan AK
    Biophys J; 1995 Sep; 69(3):1011-21. PubMed ID: 8519956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling between phosphate release and force generation in muscle actomyosin.
    Takagi Y; Shuman H; Goldman YE
    Philos Trans R Soc Lond B Biol Sci; 2004 Dec; 359(1452):1913-20. PubMed ID: 15647167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myosin cleft closure determines the energetics of the actomyosin interaction.
    Takács B; O'Neall-Hennessey E; Hetényi C; Kardos J; Szent-Györgyi AG; Kovács M
    FASEB J; 2011 Jan; 25(1):111-21. PubMed ID: 20837775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear elasticity and an 8-nm working stroke of single myosin molecules in myofilaments.
    Kaya M; Higuchi H
    Science; 2010 Aug; 329(5992):686-9. PubMed ID: 20689017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What do we learn by studying the temperature effect on isometric tension and tension transients in mammalian striated muscle fibres?
    Kawai M
    J Muscle Res Cell Motil; 2003; 24(2-3):127-38. PubMed ID: 14609024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between tension transients during isometric contraction and in rigor in isolated fibers from frog skeletal muscle.
    Linari M; Dobbie I; Vanzi F; Torök K; Irving M; Piazzesi G; Lombardi V
    Biophys J; 1995 Apr; 68(4 Suppl):218S. PubMed ID: 7787074
    [No Abstract]   [Full Text] [Related]  

  • 18. Boundaries steer the contraction of active gels.
    Schuppler M; Keber FC; Kröger M; Bausch AR
    Nat Commun; 2016 Oct; 7():13120. PubMed ID: 27739426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical decoupling of ATPase activation and force production from the contractile cycle in myosin by steric hindrance of lever-arm movement.
    Muhlrad A; Peyser YM; Nili M; Ajtai K; Reisler E; Burghardt TP
    Biophys J; 2003 Feb; 84(2 Pt 1):1047-56. PubMed ID: 12547786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-motor mechanics and models of the myosin motor.
    Yanagida T; Esaki S; Iwane AH; Inoue Y; Ishijima A; Kitamura K; Tanaka H; Tokunaga M
    Philos Trans R Soc Lond B Biol Sci; 2000 Apr; 355(1396):441-7. PubMed ID: 10836497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.