These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 9111001)

  • 21. A common motif of eukaryotic glycosyltransferases is essential for the enzyme activity of large clostridial cytotoxins.
    Busch C; Hofmann F; Selzer J; Munro S; Jeckel D; Aktories K
    J Biol Chem; 1998 Jul; 273(31):19566-72. PubMed ID: 9677381
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clostridium perfringens TpeL glycosylates the Rac and Ras subfamily proteins.
    Nagahama M; Ohkubo A; Oda M; Kobayashi K; Amimoto K; Miyamoto K; Sakurai J
    Infect Immun; 2011 Feb; 79(2):905-10. PubMed ID: 21098103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Rho-deamidating cytotoxic necrotizing factor 1 from Escherichia coli possesses transglutaminase activity. Cysteine 866 and histidine 881 are essential for enzyme activity.
    Schmidt G; Selzer J; Lerm M; Aktories K
    J Biol Chem; 1998 May; 273(22):13669-74. PubMed ID: 9593707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clostridium difficile toxins A and B are cation-dependent UDP-glucose hydrolases with differing catalytic activities.
    Ciesla WP; Bobak DA
    J Biol Chem; 1998 Jun; 273(26):16021-6. PubMed ID: 9632652
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clostridium difficile glucosyltransferase toxin B-essential amino acids for substrate binding.
    Jank T; Giesemann T; Aktories K
    J Biol Chem; 2007 Nov; 282(48):35222-31. PubMed ID: 17901056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. UDP-glucose deficiency in a mutant cell line protects against glucosyltransferase toxins from Clostridium difficile and Clostridium sordellii.
    Chaves-Olarte E; Florin I; Boquet P; Popoff M; von Eichel-Streiber C; Thelestam M
    J Biol Chem; 1996 Mar; 271(12):6925-32. PubMed ID: 8636120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Change of the donor substrate specificity of Clostridium difficile toxin B by site-directed mutagenesis.
    Jank T; Reinert DJ; Giesemann T; Schulz GE; Aktories K
    J Biol Chem; 2005 Nov; 280(45):37833-8. PubMed ID: 16157585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of wild type with recombinant Clostridium difficile toxin A.
    Gerhard R; Burger S; Tatge H; Genth H; Just I; Hofmann F
    Microb Pathog; 2005; 38(2-3):77-83. PubMed ID: 15748809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glucosylation and ADP ribosylation of rho proteins: effects on nucleotide binding, GTPase activity, and effector coupling.
    Sehr P; Joseph G; Genth H; Just I; Pick E; Aktories K
    Biochemistry; 1998 Apr; 37(15):5296-304. PubMed ID: 9548761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A segment of 97 amino acids within the translocation domain of Clostridium difficile toxin B is essential for toxicity.
    Zhang Y; Shi L; Li S; Yang Z; Standley C; Yang Z; ZhuGe R; Savidge T; Wang X; Feng H
    PLoS One; 2013; 8(3):e58634. PubMed ID: 23484044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Harnessing the glucosyltransferase activities of Clostridium difficile for functional studies of toxins A and B.
    Darkoh C; Kaplan HB; Dupont HL
    J Clin Microbiol; 2011 Aug; 49(8):2933-41. PubMed ID: 21653766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human alpha-defensins inhibit Clostridium difficile toxin B.
    Giesemann T; Guttenberg G; Aktories K
    Gastroenterology; 2008 Jun; 134(7):2049-58. PubMed ID: 18435932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large clostridial cytotoxins: cellular biology of Rho/Ras-glucosylating toxins.
    Schirmer J; Aktories K
    Biochim Biophys Acta; 2004 Jul; 1673(1-2):66-74. PubMed ID: 15238250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EhRho1, a RhoA-like GTPase of Entamoeba histolytica, is modified by clostridial glucosylating cytotoxins.
    Majumder S; Schmidt G; Lohia A; Aktories K
    Appl Environ Microbiol; 2006 Dec; 72(12):7842-8. PubMed ID: 17056697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low pH-induced formation of ion channels by clostridium difficile toxin B in target cells.
    Barth H; Pfeifer G; Hofmann F; Maier E; Benz R; Aktories K
    J Biol Chem; 2001 Apr; 276(14):10670-6. PubMed ID: 11152463
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytosolic delivery and characterization of the TcdB glucosylating domain by using a heterologous protein fusion.
    Spyres LM; Qa'Dan M; Meader A; Tomasek JJ; Howard EW; Ballard JD
    Infect Immun; 2001 Jan; 69(1):599-601. PubMed ID: 11119561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Difference in protein substrate specificity between hemorrhagic toxin and lethal toxin from Clostridium sordellii.
    Genth H; Hofmann F; Selzer J; Rex G; Aktories K; Just I
    Biochem Biophys Res Commun; 1996 Dec; 229(2):370-4. PubMed ID: 8954906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large clostridial cytotoxins.
    Just I; Gerhard R
    Rev Physiol Biochem Pharmacol; 2004; 152():23-47. PubMed ID: 15449191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytotoxicity of Clostridium difficile toxin B does not require cysteine protease-mediated autocleavage and release of the glucosyltransferase domain into the host cell cytosol.
    Li S; Shi L; Yang Z; Feng H
    Pathog Dis; 2013 Feb; 67(1):11-8. PubMed ID: 23620115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The low molecular mass GTP-binding protein Rho is affected by toxin A from Clostridium difficile.
    Just I; Selzer J; von Eichel-Streiber C; Aktories K
    J Clin Invest; 1995 Mar; 95(3):1026-31. PubMed ID: 7883950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.