These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 9111024)
1. Low fidelity mutants in the O-helix of Thermus aquaticus DNA polymerase I. Suzuki M; Avicola AK; Hood L; Loeb LA J Biol Chem; 1997 Apr; 272(17):11228-35. PubMed ID: 9111024 [TBL] [Abstract][Full Text] [Related]
2. Enhanced ribonucleotide incorporation by an O-helix mutant of Thermus aquaticus DNA polymerase I. Ogawa M; Tosaka A; Ito Y; Yoshida S; Suzuki M Mutat Res; 2001 Apr; 485(3):197-207. PubMed ID: 11267831 [TBL] [Abstract][Full Text] [Related]
3. Thermus aquaticus DNA polymerase I mutants with altered fidelity. Interacting mutations in the O-helix. Suzuki M; Yoshida S; Adman ET; Blank A; Loeb LA J Biol Chem; 2000 Oct; 275(42):32728-35. PubMed ID: 10906120 [TBL] [Abstract][Full Text] [Related]
4. Random mutagenesis of Thermus aquaticus DNA polymerase I: concordance of immutable sites in vivo with the crystal structure. Suzuki M; Baskin D; Hood L; Loeb LA Proc Natl Acad Sci U S A; 1996 Sep; 93(18):9670-5. PubMed ID: 8790389 [TBL] [Abstract][Full Text] [Related]
5. O-helix mutant T664P of Thermus aquaticus DNA polymerase I: altered catalytic properties for incorporation of incorrect nucleotides but not correct nucleotides. Tosaka A; Ogawa M; Yoshida S; Suzuki M J Biol Chem; 2001 Jul; 276(29):27562-7. PubMed ID: 11346641 [TBL] [Abstract][Full Text] [Related]
6. Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Tindall KR; Kunkel TA Biochemistry; 1988 Aug; 27(16):6008-13. PubMed ID: 2847780 [TBL] [Abstract][Full Text] [Related]
7. Computational study of putative residues involved in DNA synthesis fidelity checking in Thermus aquaticus DNA polymerase I. Elias AA; Cisneros GA Adv Protein Chem Struct Biol; 2014; 96():39-75. PubMed ID: 25443954 [TBL] [Abstract][Full Text] [Related]
8. Characteristics of DNA polymerase I from an extreme thermophile, Thermus scotoductus strain K1. Saghatelyan A; Panosyan H; Trchounian A; Birkeland NK Microbiologyopen; 2021 Jan; 10(1):e1149. PubMed ID: 33415847 [TBL] [Abstract][Full Text] [Related]
9. High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5' to 3' exonuclease activity. Lawyer FC; Stoffel S; Saiki RK; Chang SY; Landre PA; Abramson RD; Gelfand DH PCR Methods Appl; 1993 May; 2(4):275-87. PubMed ID: 8324500 [TBL] [Abstract][Full Text] [Related]
10. High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Eckert KA; Kunkel TA Nucleic Acids Res; 1990 Jul; 18(13):3739-44. PubMed ID: 2374708 [TBL] [Abstract][Full Text] [Related]
11. Molecular diversity and catalytic activity of Thermus DNA polymerases. Gibbs MD; Reeves RA; Mandelman D; Mi Q; Lee J; Bergquist PL Extremophiles; 2009 Sep; 13(5):817-26. PubMed ID: 19597696 [TBL] [Abstract][Full Text] [Related]
12. Conformational dynamics of Thermus aquaticus DNA polymerase I during catalysis. Xu C; Maxwell BA; Suo Z J Mol Biol; 2014 Aug; 426(16):2901-2917. PubMed ID: 24931550 [TBL] [Abstract][Full Text] [Related]
13. Insights into the high fidelity of a DNA polymerase I mutant. Exner TE J Mol Model; 2009 Oct; 15(10):1271-80. PubMed ID: 19333629 [TBL] [Abstract][Full Text] [Related]
14. Domain exchange: chimeras of Thermus aquaticus DNA polymerase, Escherichia coli DNA polymerase I and Thermotoga neapolitana DNA polymerase. Villbrandt B; Sobek H; Frey B; Schomburg D Protein Eng; 2000 Sep; 13(9):645-54. PubMed ID: 11054459 [TBL] [Abstract][Full Text] [Related]
15. DNA polymerase beta: analysis of the contributions of tyrosine-271 and asparagine-279 to substrate specificity and fidelity of DNA replication by pre-steady-state kinetics. Kraynov VS; Werneburg BG; Zhong X; Lee H; Ahn J; Tsai MD Biochem J; 1997 Apr; 323 ( Pt 1)(Pt 1):103-11. PubMed ID: 9173867 [TBL] [Abstract][Full Text] [Related]
16. A single highly mutable catalytic site amino acid is critical for DNA polymerase fidelity. Patel PH; Kawate H; Adman E; Ashbach M; Loeb LA J Biol Chem; 2001 Feb; 276(7):5044-51. PubMed ID: 11069916 [TBL] [Abstract][Full Text] [Related]
17. Inactivation of the 5'-3' exonuclease of Thermus aquaticus DNA polymerase. Merkens LS; Bryan SK; Moses RE Biochim Biophys Acta; 1995 Nov; 1264(2):243-8. PubMed ID: 7495870 [TBL] [Abstract][Full Text] [Related]
18. Heterogeneity of primer extension products in asymmetric PCR is due both to cleavage by a structure-specific exo/endonuclease activity of DNA polymerases and to premature stops. Tombline G; Bellizzi D; Sgaramella V Proc Natl Acad Sci U S A; 1996 Apr; 93(7):2724-8. PubMed ID: 8610108 [TBL] [Abstract][Full Text] [Related]
19. On the fidelity of DNA replication. The accuracy of Escherichia coli DNA polymerase I in copying natural DNA in vitro. Kunkel TA; Loeb LA J Biol Chem; 1980 Oct; 255(20):9961-6. PubMed ID: 6448843 [TBL] [Abstract][Full Text] [Related]
20. Interactions of replication versus repair DNA substrates with the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus. Yang Y; LiCata VJ Biophys Chem; 2011 Nov; 159(1):188-93. PubMed ID: 21742429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]