These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 9111321)

  • 21. An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity.
    Xiao Z; Latek R; Lodish HF
    Oncogene; 2003 Feb; 22(7):1057-69. PubMed ID: 12592392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription.
    Zhang Y; Feng XH; Derynck R
    Nature; 1998 Aug; 394(6696):909-13. PubMed ID: 9732876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Smad3 inhibits transforming growth factor-beta and activin signaling by competing with Smad4 for FAST-2 binding.
    Nagarajan RP; Liu J; Chen Y
    J Biol Chem; 1999 Oct; 274(44):31229-35. PubMed ID: 10531318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3.
    Yuan W; Varga J
    J Biol Chem; 2001 Oct; 276(42):38502-10. PubMed ID: 11502752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TGF-beta-induced nuclear localization of Smad2 and Smad3 in Smad4 null cancer cell lines.
    Fink SP; Mikkola D; Willson JK; Markowitz S
    Oncogene; 2003 Mar; 22(9):1317-23. PubMed ID: 12618756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suppression of tumorigenesis and induction of p15(ink4b) by Smad4/DPC4 in human pancreatic cancer cells.
    Peng B; Fleming JB; Breslin T; Grau AM; Fojioka S; Abbruzzese JL; Evans DB; Ayers D; Wathen K; Wu T; Robertson KD; Chiao PJ
    Clin Cancer Res; 2002 Nov; 8(11):3628-38. PubMed ID: 12429655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways.
    Lagna G; Hata A; Hemmati-Brivanlou A; Massagué J
    Nature; 1996 Oct; 383(6603):832-6. PubMed ID: 8893010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intracellular signaling of the TGF-beta superfamily by Smad proteins.
    Kawabata M; Imamura T; Inoue H; Hanai J; Nishihara A; Hanyu A; Takase M; Ishidou Y; Udagawa Y; Oeda E; Goto D; Yagi K; Kato M; Miyazono K
    Ann N Y Acad Sci; 1999; 886():73-82. PubMed ID: 10667205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transforming growth factor-beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function.
    Choy L; Derynck R
    J Biol Chem; 2003 Mar; 278(11):9609-19. PubMed ID: 12524424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transforming growth factor-beta inhibits pulmonary surfactant protein B gene transcription through SMAD3 interactions with NKX2.1 and HNF-3 transcription factors.
    Li C; Zhu NL; Tan RC; Ballard PL; Derynck R; Minoo P
    J Biol Chem; 2002 Oct; 277(41):38399-408. PubMed ID: 12161428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential modulation of androgen receptor-mediated transactivation by Smad3 and tumor suppressor Smad4.
    Kang HY; Huang KE; Chang SY; Ma WL; Lin WJ; Chang C
    J Biol Chem; 2002 Nov; 277(46):43749-56. PubMed ID: 12226080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of functional domains within Smad4/DPC4.
    de Caestecker MP; Hemmati P; Larisch-Bloch S; Ajmera R; Roberts AB; Lechleider RJ
    J Biol Chem; 1997 May; 272(21):13690-6. PubMed ID: 9153220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells.
    Poncelet AC; de Caestecker MP; Schnaper HW
    Kidney Int; 1999 Oct; 56(4):1354-65. PubMed ID: 10504488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SMAD3/4-dependent transcriptional activation of the human type VII collagen gene (COL7A1) promoter by transforming growth factor beta.
    Vindevoghel L; Lechleider RJ; Kon A; de Caestecker MP; Uitto J; Roberts AB; Mauviel A
    Proc Natl Acad Sci U S A; 1998 Dec; 95(25):14769-74. PubMed ID: 9843964
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells.
    De Bosscher K; Hill CS; Nicolás FJ
    Biochem J; 2004 Apr; 379(Pt 1):209-16. PubMed ID: 14715079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Smad3 linker region contains a transcriptional activation domain.
    Wang G; Long J; Matsuura I; He D; Liu F
    Biochem J; 2005 Feb; 386(Pt 1):29-34. PubMed ID: 15588252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hoxa-9 represses transforming growth factor-beta-induced osteopontin gene transcription.
    Shi X; Bai S; Li L; Cao X
    J Biol Chem; 2001 Jan; 276(1):850-5. PubMed ID: 11042172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of Smad7 promoter by direct association with Smad3 and Smad4.
    Nagarajan RP; Zhang J; Li W; Chen Y
    J Biol Chem; 1999 Nov; 274(47):33412-8. PubMed ID: 10559222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sp1 and Smad proteins cooperate to mediate transforming growth factor-beta 1-induced alpha 2(I) collagen expression in human glomerular mesangial cells.
    Poncelet AC; Schnaper HW
    J Biol Chem; 2001 Mar; 276(10):6983-92. PubMed ID: 11114293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A structural basis for mutational inactivation of the tumour suppressor Smad4.
    Shi Y; Hata A; Lo RS; Massagué J; Pavletich NP
    Nature; 1997 Jul; 388(6637):87-93. PubMed ID: 9214508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.