BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 9111345)

  • 21. Sequence-specific recruitment of transcriptional co-repressor Cabin1 by myocyte enhancer factor-2.
    Han A; Pan F; Stroud JC; Youn HD; Liu JO; Chen L
    Nature; 2003 Apr; 422(6933):730-4. PubMed ID: 12700764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA binding and dimerization determinants for thyroid hormone receptor alpha and its interaction with a nuclear protein.
    Zhang XK; Tran PB; Pfahl M
    Mol Endocrinol; 1991 Dec; 5(12):1909-20. PubMed ID: 1791838
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphorylation of the MADS-Box transcription factor MEF2C enhances its DNA binding activity.
    Molkentin JD; Li L; Olson EN
    J Biol Chem; 1996 Jul; 271(29):17199-204. PubMed ID: 8663403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myocyte enhancer factor 2 and chorion factor 2 collaborate in activation of the myogenic program in Drosophila.
    Tanaka KK; Bryantsev AL; Cripps RM
    Mol Cell Biol; 2008 Mar; 28(5):1616-29. PubMed ID: 18160709
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel functional co-operation between MyoD, MEF2 and TRalpha1 is sufficient for the induction of GLUT4 gene transcription.
    Santalucía T; Moreno H; Palacín M; Yacoub MH; Brand NJ; Zorzano A
    J Mol Biol; 2001 Nov; 314(2):195-204. PubMed ID: 11718554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Myocyte-specific enhancer-binding factor (MEF-2) regulates alpha-cardiac myosin heavy chain gene expression in vitro and in vivo.
    Molkentin JD; Markham BE
    J Biol Chem; 1993 Sep; 268(26):19512-20. PubMed ID: 8366095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Innervation-dependent and fiber type-specific transcriptional regulation of the slow myosin heavy chain 2 promoter in avian skeletal muscle fibers.
    Jiang H; Jordan T; Li J; Li H; DiMario JX
    Dev Dyn; 2004 Oct; 231(2):292-302. PubMed ID: 15366006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro transcriptional studies of the roles of the thyroid hormone (T3) response elements and minimal promoters in T3-stimulated gene transcription.
    Suen CS; Yen PM; Chin WW
    J Biol Chem; 1994 Jan; 269(2):1314-22. PubMed ID: 8288596
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cooperative transcriptional activation by the neurogenic basic helix-loop-helix protein MASH1 and members of the myocyte enhancer factor-2 (MEF2) family.
    Black BL; Ligon KL; Zhang Y; Olson EN
    J Biol Chem; 1996 Oct; 271(43):26659-63. PubMed ID: 8900141
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Myocyte-specific enhancer factor 2 acts cooperatively with a muscle activator region to regulate Drosophila tropomyosin gene muscle expression.
    Lin MH; Nguyen HT; Dybala C; Storti RV
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4623-8. PubMed ID: 8643453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Myocyte enhancer factor 2 (MEF2).
    Brand NJ
    Int J Biochem Cell Biol; 1997 Dec; 29(12):1467-70. PubMed ID: 9570140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Basal and thyroid hormone receptor auxiliary protein-enhanced binding of thyroid hormone receptor isoforms to native thyroid hormone response elements.
    Yen PM; Darling DS; Chin WW
    Endocrinology; 1991 Dec; 129(6):3331-6. PubMed ID: 1954909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors.
    Yu YT; Breitbart RE; Smoot LB; Lee Y; Mahdavi V; Nadal-Ginard B
    Genes Dev; 1992 Sep; 6(9):1783-98. PubMed ID: 1516833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding of TFIID and MEF2 to the TATA element activates transcription of the Xenopus MyoDa promoter.
    Leibham D; Wong MW; Cheng TC; Schroeder S; Weil PA; Olson EN; Perry M
    Mol Cell Biol; 1994 Jan; 14(1):686-99. PubMed ID: 8264638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Myocyte enhancer factor 2 regulates expression of medaka Oryzias latipes fast skeletal myosin heavy chain genes in a temperature-dependent manner.
    Liang CS; Ikeda D; Kinoshita S; Shimizu A; Sasaki T; Asakawa S; Shimizu N; Watabe S
    Gene; 2008 Jan; 407(1-2):42-53. PubMed ID: 17964084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of thyroid hormone receptor gene disruption on myosin isoform expression in mouse skeletal muscles.
    Yu F; Göthe S; Wikström L; Forrest D; Vennström B; Larsson L
    Am J Physiol Regul Integr Comp Physiol; 2000 Jun; 278(6):R1545-54. PubMed ID: 10848522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast skeletal muscle-specific expression of a zebrafish myosin light chain 2 gene and characterization of its promoter by direct injection into skeletal muscle.
    Xu Y; He J; Tian HL; Chan CH; Liao J; Yan T; Lam TJ; Gong Z
    DNA Cell Biol; 1999 Jan; 18(1):85-95. PubMed ID: 10025512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA binding and interaction with the nuclear receptor corepressor of thyroid hormone receptor are required for ligand-independent stimulation of the mouse preprothyrotropin-releasing hormone gene.
    Satoh T; Monden T; Ishizuka T; Mitsuhashi T; Yamada M; Mori M
    Mol Cell Endocrinol; 1999 Aug; 154(1-2):137-49. PubMed ID: 10509808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the functional role of steroid receptor coactivator-1 in ligand-induced transactivation by thyroid hormone receptor.
    Jeyakumar M; Tanen MR; Bagchi MK
    Mol Endocrinol; 1997 Jun; 11(6):755-67. PubMed ID: 9171239
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis.
    Naidu PS; Ludolph DC; To RQ; Hinterberger TJ; Konieczny SF
    Mol Cell Biol; 1995 May; 15(5):2707-18. PubMed ID: 7739551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.