These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9111458)

  • 21. Is hip muscle strength the key to walking as a bilateral amputee, whatever the level of the amputations?
    Visser J; McCarthy I; Marks L; Davis RC
    Prosthet Orthot Int; 2011 Dec; 35(4):451-8. PubMed ID: 21983043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of prosthesis mass on metabolic cost of ambulation in non-vascular trans-tibial amputees.
    Gailey RS; Nash MS; Atchley TA; Zilmer RM; Moline-Little GR; Morris-Cresswell N; Siebert LI
    Prosthet Orthot Int; 1997 Apr; 21(1):9-16. PubMed ID: 9141121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of foot and ankle immobilization on able-bodied gait as a model to increase understanding about bilateral transtibial amputee gait.
    Nepomuceno A; Major MJ; Stine R; Gard S
    Prosthet Orthot Int; 2017 Dec; 41(6):556-563. PubMed ID: 28318394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic costs of activities of daily living in persons with a lower limb amputation: A systematic review and meta-analysis.
    van Schaik L; Geertzen JHB; Dijkstra PU; Dekker R
    PLoS One; 2019; 14(3):e0213256. PubMed ID: 30893346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Handrail and Cane Support on Energy Cost of Walking in People With Different Levels and Causes of Lower Limb Amputation.
    Houdijk H; Blokland IJ; Nazier SA; Castenmiller SV; van den Heuvel I; IJmker T
    Arch Phys Med Rehabil; 2021 Jul; 102(7):1340-1346.e3. PubMed ID: 33684364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbohydrate and fat oxidation in persons with lower limb amputation during walking with different speeds.
    Gjovaag T; Mirtaheri P; Starholm IM
    Prosthet Orthot Int; 2018 Jun; 42(3):304-310. PubMed ID: 29119861
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The CAT-CAM socket and quadrilateral socket: a comparison of energy cost during ambulation.
    Gailey RS; Lawrence D; Burditt C; Spyropoulos P; Newell C; Nash MS
    Prosthet Orthot Int; 1993 Aug; 17(2):95-100. PubMed ID: 8233775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A reassessment of center-of-mass dynamics as a determinate of the metabolic inefficiency of above-knee amputee ambulation.
    Gitter A; Czerniecki J; Weaver K
    Am J Phys Med Rehabil; 1995; 74(5):332-8. PubMed ID: 7576408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison of energy expenditure by a high level trans-femoral amputee using the Intelligent Prosthesis and conventionally damped prosthetic limbs.
    Taylor MB; Clark E; Offord EA; Baxter C
    Prosthet Orthot Int; 1996 Aug; 20(2):116-21. PubMed ID: 8876005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Touch-down and take-off characteristics of the long jump performance of world level above- and below-knee amputee athletes.
    Nolan L; Lees A
    Ergonomics; 2000 Oct; 43(10):1637-50. PubMed ID: 11083143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energy expenditure of wheeling and walking during prosthetic rehabilitation in a woman with bilateral transfemoral amputations.
    Wu YJ; Chen SY; Lin MC; Lan C; Lai JS; Lien IN
    Arch Phys Med Rehabil; 2001 Feb; 82(2):265-9. PubMed ID: 11239324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy cost of walking of below-knee amputees having no vascular disease.
    Pagliarulo MA; Waters R; Hislop HJ
    Phys Ther; 1979 May; 59(5):538-43. PubMed ID: 441113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy flow analysis of amputee walking shows a proximally-directed transfer of energy in intact limbs, compared to a distally-directed transfer in prosthetic limbs at push-off.
    Weinert-Aplin RA; Howard D; Twiste M; Jarvis HL; Bennett AN; Baker RJ
    Med Eng Phys; 2017 Jan; 39():73-82. PubMed ID: 27836575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fixed and self-paced treadmill walking for able-bodied and transtibial amputees in a multi-terrain virtual environment.
    Sinitski EH; Lemaire ED; Baddour N; Besemann M; Dudek NL; Hebert JS
    Gait Posture; 2015 Feb; 41(2):568-73. PubMed ID: 25661003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical work adaptations of above-knee amputee ambulation.
    Seroussi RE; Gitter A; Czerniecki JM; Weaver K
    Arch Phys Med Rehabil; 1996 Nov; 77(11):1209-14. PubMed ID: 8931539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D intersegmental knee loading in below-knee amputees across steady-state walking speeds.
    Fey NP; Neptune RR
    Clin Biomech (Bristol, Avon); 2012 May; 27(4):409-14. PubMed ID: 22138437
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Normative ground reaction force data for able-bodied and below-knee-amputee children during walking.
    Engsberg JR; Lee AG; Tedford KG; Harder JA
    J Pediatr Orthop; 1993; 13(2):169-73. PubMed ID: 8459005
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amputation: energy cost of ambulation.
    Huang CT; Jackson JR; Moore NB; Fine PR; Kuhlemeier KV; Traugh GH; Saunders PT
    Arch Phys Med Rehabil; 1979 Jan; 60(1):18-24. PubMed ID: 420566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy consumption during prosthetic walking and physical fitness in older hip disarticulation amputees.
    Chin T; Kuroda R; Akisue T; Iguchi T; Kurosaka M
    J Rehabil Res Dev; 2012; 49(8):1255-60. PubMed ID: 23341317
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exercise performance of lower-extremity amputees.
    Ward KH; Meyers MC
    Sports Med; 1995 Oct; 20(4):207-14. PubMed ID: 8584846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.