BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9111932)

  • 1. The protective effects of dihydrolipoamide and glutathione against photodynamic damage by Al-phtalocyanine tetrasulfonate.
    Kliukiene R; Maroziene A; Nivinskas H; Cenas N; Kirveliene V; Juodka B
    Biochem Mol Biol Int; 1997 Apr; 41(4):707-13. PubMed ID: 9111932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of erythrocyte photohemolysis rate by glutathione reductase inactivating alkylating agents.
    Kersienè R; Marozienè A; Kliukienè R; Anusevicius Z; Didziapetrienè J; Cènas N
    Biochem Mol Biol Int; 1998 Jul; 45(4):709-16. PubMed ID: 9713693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of molecular oxygen in the photodynamic effect of phthalocyanines.
    Rosenthal I; Murali Krishna C; Riesz P; Ben-Hur E
    Radiat Res; 1986 Jul; 107(1):136-42. PubMed ID: 3737875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid sequence homology between pig heart lipoamide dehydrogenase and human erythrocyte glutathione reductase.
    Williams CH; Arscott LD; Schulz GE
    Proc Natl Acad Sci U S A; 1982 Apr; 79(7):2199-201. PubMed ID: 6954534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplified determination of lipoyl groups by lipoamide dehydrogenase in the presence of oxidized glutathione.
    Konishi T; Handelman G; Matsugo S; Mathur VV; Tritschler HJ; Packer L
    Biochem Mol Biol Int; 1996 May; 38(6):1155-61. PubMed ID: 8739037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathione reductase and lipoamide dehydrogenase have opposite stereospecificities for alpha-lipoic acid enantiomers.
    Pick U; Haramaki N; Constantinescu A; Handelman GJ; Tritschler HJ; Packer L
    Biochem Biophys Res Commun; 1995 Jan; 206(2):724-30. PubMed ID: 7826393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoinactivation of trypanothione reductase and glutathione reductase by Al-phthalocyanine tetrasulfonate and hematoporphyrin.
    Kliukiené R; Maroziené A; Cénas N; Becker K; Blanchard JS
    Biochem Biophys Res Commun; 1996 Jan; 218(2):629-32. PubMed ID: 8561807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active site-specific inhibition by 1,3-bis(2-chloroethyl)-1-nitrosourea of two genetically homologous flavoenzymes: glutathione reductase and lipoamide dehydrogenase.
    Ahmad T; Frischer H
    J Lab Clin Med; 1985 Apr; 105(4):464-71. PubMed ID: 3920338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of 1O2 quencher depletion on the efficiency of photodynamic therapy.
    Weston MA; Patterson MS
    Photochem Photobiol Sci; 2014 Jan; 13(1):112-21. PubMed ID: 24296529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative studies of glutathione reductase and lipoamide dehydrogenase.
    Tsai CS; Templeton DM; Godin JR; Farrell KP; Wand AJ
    Comp Biochem Physiol B; 1988; 90(2):335-9. PubMed ID: 3044690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoinactivation of glutathione reductase by hematoporphyrin and Al-phthalocyanine tetrasulfonate.
    Kliukiené R; Maroziené A; Cénas N; Schirmer RH
    Biochem Soc Trans; 1996 Feb; 24(1):8S. PubMed ID: 8674760
    [No Abstract]   [Full Text] [Related]  

  • 12. A Biotinylated and Endoplasmic Reticulum-Targeted Glutathione-Responsive Zinc(II) Phthalocyanine for Targeted Photodynamic Therapy.
    Yu L; Wang Q; Yeung KW; Fong WP; Lo PC
    Chem Asian J; 2018 Nov; 13(22):3509-3517. PubMed ID: 29956487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pig heart lipoamide dehydrogenase: solvent equilibrium and kinetic isotope effects.
    Leichus BN; Blanchard JS
    Biochemistry; 1992 Mar; 31(12):3065-72. PubMed ID: 1554695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro fluence rate effects in photodynamic reactions with AIPcS4 as sensitizer.
    Moor AC; Lagerberg JW; Tijssen K; Foley S; Truscott TG; Kochevar IE; Brand A; Dubbelman TM; VanSteveninck J
    Photochem Photobiol; 1997 Dec; 66(6):860-5. PubMed ID: 9421972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-drug Self-assembled Nanoparticles: Recovering activity and overcoming glutathione-associated cell antioxidant resistance against photodynamic therapy.
    Xu K; Yao H; Hu J; Zhou J; Zhou L; Wei S
    Free Radic Biol Med; 2018 Aug; 124():431-446. PubMed ID: 29981371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalysis of nitrofuran redox-cycling and superoxide anion production by heart lipoamide dehydrogenase.
    Sreider CM; Grinblat L; Stoppani AO
    Biochem Pharmacol; 1990 Oct; 40(8):1849-57. PubMed ID: 2173592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodynamic effects of chloroaluminum phthalocyanine tetrasulfonate are mediated by singlet oxygen: in vivo and in vitro studies utilizing hepatic microsomes as a model membrane source.
    Agarwal R; Zaidi SI; Athar M; Bickers DR; Mukhtar H
    Arch Biochem Biophys; 1992 Apr; 294(1):30-7. PubMed ID: 1550355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of depleted glutathione levels on the photodynamic action of zinc phthalocyanine in CHO K1 cells.
    Krajewska E; Bryszewska M; Chapman IV
    J Clin Laser Med Surg; 2003 Aug; 21(4):185-91. PubMed ID: 13678455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytosolic and mitochondrial systems for NADH- and NADPH-dependent reduction of alpha-lipoic acid.
    Haramaki N; Han D; Handelman GJ; Tritschler HJ; Packer L
    Free Radic Biol Med; 1997; 22(3):535-42. PubMed ID: 8981046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of protein -SH groups in redox homeostasis--the erythrocyte as a model system.
    Di Simplicio P; Cacace MG; Lusini L; Giannerini F; Giustarini D; Rossi R
    Arch Biochem Biophys; 1998 Jul; 355(2):145-52. PubMed ID: 9675020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.