BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9112102)

  • 21. The influence of loud sound on red blood cell velocity and blood vessel diameter in the cochlea.
    Quirk WS; Avinash G; Nuttall AL; Miller JM
    Hear Res; 1992 Nov; 63(1-2):102-7. PubMed ID: 1464564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparison of laser Doppler and intravital microscopic measures of cochlear blood flow.
    LaRouere MJ; Sillman JS; Nuttall AL; Miller JM
    Otolaryngol Head Neck Surg; 1989 Sep; 101(3):375-84. PubMed ID: 2508008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Provoked flux motion of cochlear blood flow measured with laser Doppler flowmetry in guinea pig.
    Ren TY; Nuttall AL; Miller JM
    Acta Otolaryngol; 1993 Sep; 113(5):609-14. PubMed ID: 8266787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of loud sound exposure on the cochlear blood flow.
    Okamoto A; Tamura T; Yokoyama K; Kobayashi N; Hasegawa M
    Acta Otolaryngol; 1990; 109(5-6):378-82. PubMed ID: 2141752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence of activity-dependent plasticity in the dorsal cochlear nucleus, in vivo, induced by brief sound exposure.
    Gao Y; Manzoor N; Kaltenbach JA
    Hear Res; 2016 Nov; 341():31-42. PubMed ID: 27490001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in the tonotopic map of the dorsal cochlear nucleus in hamsters with hair cell loss and radial nerve bundle degeneration.
    Meleca RJ; Kaltenbach JA; Falzarano PR
    Brain Res; 1997 Mar; 750(1-2):201-13. PubMed ID: 9098546
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exposure to low frequency noise during rearing induces spongiform lesions in gerbil cochlear nucleus: high frequency exposure does not.
    McGinn MD; Faddis BT
    Hear Res; 1994 Dec; 81(1-2):57-65. PubMed ID: 7737930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of vasodilating agents on cochlear blood flow under loud sound exposure.
    Okamoto A; Tamura T; Hasegawa M; Togawa T
    Acta Otolaryngol; 1990; 110(5-6):394-8. PubMed ID: 2284914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of intense tone exposure on choline acetyltransferase activity in the hamster cochlear nucleus.
    Jin YM; Godfrey DA; Wang J; Kaltenbach JA
    Hear Res; 2006; 216-217():168-75. PubMed ID: 16549284
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Summary of evidence pointing to a role of the dorsal cochlear nucleus in the etiology of tinnitus.
    Kaltenbach JA
    Acta Otolaryngol Suppl; 2006 Dec; (556):20-6. PubMed ID: 17114138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temporal and mean rate discharge patterns of single units in the dorsal cochlear nucleus of the anesthetized guinea pig.
    Stabler SE; Palmer AR; Winter IM
    J Neurophysiol; 1996 Sep; 76(3):1667-88. PubMed ID: 8890284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Peripheral assessment of phenylephrine-induced vasoconstriction by laser Doppler flowmetry and its potential relevance to homeostatic mechanisms.
    Silverman DG; Jotkowitz AB; Freemer M; Gutter V; O'Connor TZ; Braverman IM
    Circulation; 1994 Jul; 90(1):23-6. PubMed ID: 8026002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The vascular origin of slow wave flowmotion in skeletal muscle during local hypotension.
    Schmidt JA; Borgström P; Intaglietta M
    Int J Microcirc Clin Exp; 1993 Jun; 12(3):287-97. PubMed ID: 8375963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulatory effects of somatosensory electrical stimulation on neural activity of the dorsal cochlear nucleus of hamsters.
    Zhang J; Guan Z
    J Neurosci Res; 2008 Apr; 86(5):1178-87. PubMed ID: 17975829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasticity of spontaneous neural activity in the dorsal cochlear nucleus after intense sound exposure.
    Kaltenbach JA; Zhang J; Afman CE
    Hear Res; 2000 Sep; 147(1-2):282-92. PubMed ID: 10962192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Muscarinic acetylcholine receptors control baseline activity and Hebbian stimulus timing-dependent plasticity in fusiform cells of the dorsal cochlear nucleus.
    Stefanescu RA; Shore SE
    J Neurophysiol; 2017 Mar; 117(3):1229-1238. PubMed ID: 28003407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increases in spontaneous neural activity in the hamster dorsal cochlear nucleus following cisplatin treatment: a possible basis for cisplatin-induced tinnitus.
    Rachel JD; Kaltenbach JA; Janisse J
    Hear Res; 2002 Feb; 164(1-2):206-14. PubMed ID: 11950539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in cochlear blood flow in mice due to loud sound exposure measured with Doppler optical microangiography and laser Doppler flowmetry.
    Reif R; Zhi Z; Dziennis S; Nuttall AL; Wang RK
    Quant Imaging Med Surg; 2013 Oct; 3(5):235-42. PubMed ID: 24273740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of acoustic trauma on dorsal cochlear nucleus neuron activity in slices.
    Chang H; Chen K; Kaltenbach JA; Zhang J; Godfrey DA
    Hear Res; 2002 Feb; 164(1-2):59-68. PubMed ID: 11950525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of dorsal cochlear nucleus ablation on tinnitus in rats.
    Brozoski TJ; Bauer CA
    Hear Res; 2005 Aug; 206(1-2):227-36. PubMed ID: 16081010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.