BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 9112115)

  • 1. Ultrastructural localization of the Na-K-Cl cotransporter in the lateral wall of the rabbit cochlear duct.
    Mizuta K; Adachi M; Iwasa KH
    Hear Res; 1997 Apr; 106(1-2):154-62. PubMed ID: 9112115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro.
    Wangemann P; Liu J; Marcus DC
    Hear Res; 1995 Apr; 84(1-2):19-29. PubMed ID: 7642451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na-K-Cl cotransporter expression in the developing and senescent gerbil cochlea.
    Sakaguchi N; Crouch JJ; Lytle C; Schulte BA
    Hear Res; 1998 Apr; 118(1-2):114-22. PubMed ID: 9606066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bumetanide-induced enlargement of the intercellular space in the stria vascularis critically depends on Na+ transport.
    Higashiyama K; Takeuchi S; Azuma H; Sawada S; Yamakawa K; Kakigi A; Takeda T
    Hear Res; 2003 Dec; 186(1-2):1-9. PubMed ID: 14644454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Movement of monovalent ions across the membranes of marginal cells of the stria vascularis in the guinea pig cochlea.
    Komune S; Nakagawa T; Hisashi K; Kimituki T; Uemura T
    ORL J Otorhinolaryngol Relat Spec; 1993; 55(2):61-7. PubMed ID: 8383309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural localization of G-protein GS in the lateral wall of the guinea pig cochlear duct.
    Mizuta K; Iwasa KH; Simonds WF; Tachibana M
    Hear Res; 1996 Apr; 93(1-2):111-9. PubMed ID: 8735072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ouabain-induced vacuolar formation in marginal cells in the stria vascularis is dependent on perilymphatic Na(+).
    Higashiyama K; Takeuchi S; Azuma H; Sawada S; Kakigi A; Takeda T
    ORL J Otorhinolaryngol Relat Spec; 2010; 71 Suppl 1():57-66. PubMed ID: 20185950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructural localization of megalin in the rat cochlear duct.
    Mizuta K; Saito A; Watanabe T; Nagura M; Arakawa M; Shimizu F; Hoshino T
    Hear Res; 1999 Mar; 129(1-2):83-91. PubMed ID: 10190754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical profiles for monovalent ions in the stria vascularis: cellular model of ion transport mechanisms.
    Ikeda K; Morizono T
    Hear Res; 1989 Jun; 39(3):279-86. PubMed ID: 2753832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the volume of marginal cells induced by isotonic 'Cl- depletion/restoration': involvement of the Cl- channel and Na+-K+-Cl- cotransporter.
    Takeuchi S; Ando M; Irimajiri A
    Hear Res; 1997 Nov; 113(1-2):99-109. PubMed ID: 9387989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of an inwardly rectifying K+ channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential.
    Hibino H; Higashi-Shingai K; Fujita A; Iwai K; Ishii M; Kurachi Y
    Eur J Neurosci; 2004 Jan; 19(1):76-84. PubMed ID: 14750965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of actin in basal cells of stria vascularis.
    Nakazawa K; Spicer SS; Gratton MA; Schulte BA
    Hear Res; 1996 Jul; 96(1-2):13-9. PubMed ID: 8817302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative immunocytochemical localization of Na+,K+-ATPase alpha-subunit in the lateral wall of rat cochlear duct.
    Iwano T; Yamamoto A; Omori K; Akayama M; Kumazawa T; Tashiro Y
    J Histochem Cytochem; 1989 Mar; 37(3):353-63. PubMed ID: 2537354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency.
    Spicer SS; Schulte BA
    Hear Res; 1996 Oct; 100(1-2):80-100. PubMed ID: 8922982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion flow in stria vascularis and the production and regulation of cochlear endolymph and the endolymphatic potential.
    Patuzzi R
    Hear Res; 2011 Jul; 277(1-2):4-19. PubMed ID: 21329750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gastric type H+,K+-ATPase in the cochlear lateral wall is critically involved in formation of the endocochlear potential.
    Shibata T; Hibino H; Doi K; Suzuki T; Hisa Y; Kurachi Y
    Am J Physiol Cell Physiol; 2006 Nov; 291(5):C1038-48. PubMed ID: 16822945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular localization of facilitated glucose transporter 1 (GLUT-1) in the cochlear stria vascularis: its possible contribution to the transcellular glucose pathway.
    Ando M; Edamatsu M; Fukuizumi S; Takeuchi S
    Cell Tissue Res; 2008 Mar; 331(3):763-9. PubMed ID: 18196278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endolymphatic sodium homeostasis by Reissner's membrane.
    Lee JH; Marcus DC
    Neuroscience; 2003; 119(1):3-8. PubMed ID: 12763062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of type IV collagen, laminin, and heparan sulfate proteoglycan in the regulation of labyrinthine fluid in the rat cochlear duct.
    Satoh H; Kawasaki K; Kihara I; Nakano Y
    Eur Arch Otorhinolaryngol; 1998; 255(6):285-8. PubMed ID: 9693922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spiral ligament and stria vascularis changes in cochlear otosclerosis: effect on hearing level.
    Doherty JK; Linthicum FH
    Otol Neurotol; 2004 Jul; 25(4):457-64. PubMed ID: 15241221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.