BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 911212)

  • 1. Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation.
    Wagner R; Andreesen JR
    Arch Microbiol; 1977 Sep; 114(3):219-24. PubMed ID: 911212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenium requirement for active xanthine dehydrogenase from Clostridium acidiurici and Clostridium cylindrosporum.
    Wagner R; Andreesen JR
    Arch Microbiol; 1979 Jun; 121(3):255-60. PubMed ID: 518233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formate dehydrogenase of Clostridium thermoaceticum: incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme.
    Andreesen JR; Ljungdahl LG
    J Bacteriol; 1973 Nov; 116(2):867-73. PubMed ID: 4147651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of ferrous ions, tungstate and selenite on the level of formate dehydrogenase in Clostridium formicoaceticum and formate synthesis from CO2 during pyruvate fermentation.
    Andreesen JR; El Ghazzawi E; Gottschalk G
    Arch Mikrobiol; 1974 Mar; 96(2):103-18. PubMed ID: 4836256
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of molybdenum and tungsten on synthesis and composition of formate dehydrogenase in Methanobacterium formicicum.
    May HD; Patel PS; Ferry JG
    J Bacteriol; 1988 Aug; 170(8):3384-9. PubMed ID: 2457011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum.
    Leonhardt U; Andreesen JR
    Arch Microbiol; 1977 Dec; 115(3):277-84. PubMed ID: 23733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formate dehydrogenase, a selenium--tungsten enzyme from Clostridium thermoaceticum.
    Ljungdahl LG; Andreesen JR
    Methods Enzymol; 1978; 53():360-72. PubMed ID: 713844
    [No Abstract]   [Full Text] [Related]  

  • 8. Ferredoxin and formyltetrahydrofolate synthetase: comparative studies with Clostridium acidiurici, Clostridium cylindrosporum, and newly isolated anaerobic uric acid-fermenting strains.
    Champion AB; Rabinowitz JC
    J Bacteriol; 1977 Dec; 132(3):1003-20. PubMed ID: 411781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of tungstate and/or molybdate in the formation of aldehyde oxidoreductase in Clostridium thermoaceticum and other acetogens; immunological distances of such enzymes.
    White H; Simon H
    Arch Microbiol; 1992; 158(2):81-4. PubMed ID: 1417415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of molybdate, tungstate, and selenium compounds on formate dehydrogenase and other enzyme systems in Escherichia coli.
    Enoch HG; Lester RL
    J Bacteriol; 1972 Jun; 110(3):1032-40. PubMed ID: 4555402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of molybdate and selenite on formate and nitrate metabolism in Escherichia coli.
    Lester RL; DeMoss JA
    J Bacteriol; 1971 Mar; 105(3):1006-14. PubMed ID: 4926673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced ferredoxin: CO2 oxidoreductase from Clostridium pasteurianum: its role in formate metabolism.
    Thauer RK; Fuchs G; Jungermann K
    J Bacteriol; 1974 May; 118(2):758-60. PubMed ID: 4597459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii. Separation of the two forms and characterization of the purified selenium-independent form.
    Jones JB; Stadtman TC
    J Biol Chem; 1981 Jan; 256(2):656-63. PubMed ID: 7451465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role for tungsten in the biology of Campylobacter jejuni: tungstate stimulates formate dehydrogenase activity and is transported via an ultra-high affinity ABC system distinct from the molybdate transporter.
    Smart JP; Cliff MJ; Kelly DJ
    Mol Microbiol; 2009 Nov; 74(3):742-57. PubMed ID: 19818021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formate dehydrogenase from Clostridium acidiurici.
    Kearny JJ; Sagers RD
    J Bacteriol; 1972 Jan; 109(1):152-61. PubMed ID: 4333376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of formate by mycobacteria of the scrofulaceum group.
    Ishaque M; Kim SJ; Kato L
    Can J Microbiol; 1978 Dec; 24(12):1548-52. PubMed ID: 747815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of the formate-nitrate electron transport pathway from inactive components in Escherichia coli.
    Scott RH; DeMoss JA
    J Bacteriol; 1976 Apr; 126(1):478-86. PubMed ID: 770433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of molybdenum and tungsten on induction of nitrate reductase and formate dehydrogenase in wild type and mutant Paracoccus denitrificans.
    Burke KA; Calder K; Lascelles J
    Arch Microbiol; 1980 Jun; 126(2):155-9. PubMed ID: 7192082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formate dehydrogenase of Clostridium pasteurianum.
    Liu CL; Mortenson LE
    J Bacteriol; 1984 Jul; 159(1):375-80. PubMed ID: 6547435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formate dehydrogenase molybdenum and tungsten sites--observation by EXAFS of structural differences.
    Cramer SP; Liu CL; Mortenson LE; Spence JT; Liu SM; Yamamoto I; Ljungdahl LG
    J Inorg Biochem; 1985 Feb; 23(2):119-24. PubMed ID: 3973583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.