BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 9113131)

  • 1. Ca(2+)-dependent changes of acetylcholine release and IP3 mass in Torpedo cholinergic synaptosomes.
    Carrasco MA; Gaudry-Talarmain YM; Molgo J
    Neurochem Int; 1996 Dec; 29(6):637-43. PubMed ID: 9113131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca(2+)-dependent changes of acetylcholine release and IP3 mass in Torpedo cholinergic synaptosomes.
    Carrasco MA; Gaudry-Talarmain YM; Molgo J
    Neurochem Int; 1997 Mar; 30(3):321-7. PubMed ID: 9041564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-independent release of acetylcholine from electric organ synaptosomes and its changes by depolarization and cholinergic drugs.
    Dolezal V; Diebler MF; Lazereg S; Israël M; Tucek S
    J Neurochem; 1988 Feb; 50(2):406-13. PubMed ID: 2447238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of lactate on acetylcholine release evoked by various stimuli from Torpedo synaptosomes.
    Gaudry-Talarmain YM
    Eur J Pharmacol; 1986 Oct; 129(3):235-43. PubMed ID: 2430814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lambert-Eaton syndrome antibodies inhibit acetylcholine release and P/Q-type Ca2+ channels in electric ray nerve endings.
    Satoh Y; Hirashima N; Tokumaru H; Takahashi MP; Kang J; Viglione MP; Kim YI; Kirino Y
    J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):427-38. PubMed ID: 9508807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide and peroxynitrite affect differently acetylcholine release, choline acetyltransferase activity, synthesis, and compartmentation of newly formed acetylcholine in Torpedo marmorata synaptosomes.
    Morot Gaudry-Talarmain Y; Moulian N; Meunier FA; Blanchard B; Angaut-Petit D; Faille L; Ducrocq C
    Nitric Oxide; 1997 Aug; 1(4):330-45. PubMed ID: 9441905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP release from pure cholinergic synaptosomes is not blocked by tetanus toxin.
    Rabasseda X; Solsona C; Marsal J; Egea G; Bizzini B
    FEBS Lett; 1987 Mar; 213(2):337-40. PubMed ID: 3556585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between presynaptic membrane potential and acetylcholine release in synaptosomes from Torpedo electric organ.
    Meunier FM
    J Physiol; 1984 Sep; 354():121-37. PubMed ID: 6207289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phorbol esters induce neurotransmitter release in cholinergic synaptosomes from Torpedo electric organ.
    Guitart X; Marsal J; Solsona C
    J Neurochem; 1990 Aug; 55(2):468-72. PubMed ID: 2370549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative effects of aluminum and ouabain on synaptosomal choline uptake, acetylcholine release and (Na+/K+)ATPase.
    Silva VS; Nunes MA; Cordeiro JM; Calejo AI; Santos S; Neves P; Sykes A; Morgado F; Dunant Y; Gonçalves PP
    Toxicology; 2007 Jul; 236(3):158-77. PubMed ID: 17560001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate and acetylcholine release from cholinergic nerve terminals, a calcium control of the specificity of the release mechanism.
    Israël M; Lesbats B; Bruner J
    Neurochem Int; 1993 Jan; 22(1):53-8. PubMed ID: 8095171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opiates inhibit acetylcholine release from Torpedo nerve terminals by blocking Ca2+ influx.
    Michaelson DM; McDowall G; Sarne Y
    J Neurochem; 1984 Sep; 43(3):614-8. PubMed ID: 6431053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of mitochondrial Ca2+ release diminishes the effectiveness of methyl mercury to release acetylcholine from synaptosomes.
    Levesque PC; Hare MF; Atchison WD
    Toxicol Appl Pharmacol; 1992 Jul; 115(1):11-20. PubMed ID: 1378659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural changes at pure cholinergic synaptosomes during the transmitter release induced by A-23187 in Torpedo marmorata. A freeze-fracture study.
    Egea G; Esquerda JE; Calvet R; Solsona C; Marsal J
    Cell Tissue Res; 1987 Apr; 248(1):207-14. PubMed ID: 3105889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+-dependent protein phosphorylation of purely cholinergic Torpedo synaptosomes.
    Michaelson DM; Avissar S
    J Biol Chem; 1979 Dec; 254(24):12542-6. PubMed ID: 387788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cetiedil, a drug that inhibits acetylcholine release in Torpedo electric organ.
    Gaudry-Talarmain YM; Israël M; Lesbats B; Morel N
    J Neurochem; 1987 Aug; 49(2):548-54. PubMed ID: 3598585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compared effects of two vesicular acetylcholine uptake blockers, AH5183 and cetiedil, on cholinergic functions in Torpedo synaptosomes: acetylcholine synthesis, choline transport, vesicular uptake, and evoked acetylcholine release.
    Gaudry-Talarmain YM; Diebler MF; O'Regan S
    J Neurochem; 1989 Mar; 52(3):822-9. PubMed ID: 2493069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of presynaptic phospholipase A2 neurotoxins on Torpedo synaptosomes.
    Délot E; Bon C
    J Neurochem; 1992 Jan; 58(1):311-9. PubMed ID: 1727438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of acetylcholine release from Torpedo synaptosomes in response to prolonged depolarizations.
    Birman S; Meunier FM
    J Physiol; 1985 Nov; 368():293-307. PubMed ID: 3935777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agelenopsis aperta venom and FTX, a purified toxin, inhibit acetylcholine release in Torpedo synaptosomes.
    Moulian N; Gaudry-Talarmain YM
    Neuroscience; 1993 Jun; 54(4):1035-41. PubMed ID: 8393536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.