These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9113336)

  • 1. Expanding the 43C9 class of catalytic antibodies using a chain-shuffling approach.
    Miller GP; Posner BA; Benkovic SJ
    Bioorg Med Chem; 1997 Mar; 5(3):581-90. PubMed ID: 9113336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for amide hydrolysis catalyzed by the 43C9 antibody.
    Thayer MM; Olender EH; Arvai AS; Koike CK; Canestrelli IL; Stewart JD; Benkovic SJ; Getzoff ED; Roberts VA
    J Mol Biol; 1999 Aug; 291(2):329-45. PubMed ID: 10438624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening combinatorial antibody libraries for catalytic acyl transfer reactions.
    Sastry L; Mubaraki M; Janda KD; Benkovic SJ; Lerner RA
    Ciba Found Symp; 1991; 159():145-51; discussion 151-5. PubMed ID: 1835693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of hapten binding and catalytic determinants in a family of catalytic antibodies.
    Ulrich HD; Schultz PG
    J Mol Biol; 1998 Jan; 275(1):95-111. PubMed ID: 9451442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed mutagenesis of a catalytic antibody: an arginine and a histidine residue play key roles.
    Stewart JD; Roberts VA; Thomas NR; Getzoff ED; Benkovic SJ
    Biochemistry; 1994 Mar; 33(8):1994-2003. PubMed ID: 8117656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct hydroxide attack is a plausible mechanism for amidase antibody 43C9.
    Chong LT; Bandyopadhyay P; Scanlan TS; Kuntz ID; Kollman PA
    J Comput Chem; 2003 Sep; 24(12):1371-7. PubMed ID: 12868101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and characterization of recombinant single-chain Fv and Fv fragments derived from a set of catalytic antibodies.
    Kim SH; Schindler DG; Lindner AB; Tawfik DS; Eshhar Z
    Mol Immunol; 1997; 34(12-13):891-906. PubMed ID: 9464525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Innate antibody catalysis.
    Gololobov G; Sun M; Paul S
    Mol Immunol; 1999 Dec; 36(18):1215-22. PubMed ID: 10684961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissection of an antibody-catalyzed reaction.
    Stewart JD; Krebs JF; Siuzdak G; Berdis AJ; Smithrud DB; Benkovic SJ
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7404-9. PubMed ID: 8052597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro abzyme evolution to optimize antibody recognition for catalysis.
    Takahashi N; Kakinuma H; Liu L; Nishi Y; Fujii I
    Nat Biotechnol; 2001 Jun; 19(6):563-7. PubMed ID: 11385462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic features of monoclonal antibody i41SL1-2 subunits.
    Hifumi E; Kondo H; Mitsuda Y; Uda T
    Biotechnol Bioeng; 2003 Nov; 84(4):485-93. PubMed ID: 14574707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in the biochemical properties of esterolytic antibodies correlate with structural diversity.
    Zemel R; Schindler DG; Tawfik DS; Eshhar Z; Green BS
    Mol Immunol; 1994 Feb; 31(2):127-37. PubMed ID: 8309476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational and inhibitory analysis of a catalytic antibody. Implication for drug discovery.
    Phichith D; Bun S; Padiolleau-Lefèvre S; Banh S; Thomas D; Friboulet A; Avalle B
    Mol Immunol; 2009 Dec; 47(2-3):348-56. PubMed ID: 19828199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a serine protease-like catalytic triad on an antibody light chain displayed on the yeast cell surface.
    Okochi N; Kato-Murai M; Kadonosono T; Ueda M
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):597-603. PubMed ID: 17899065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic antibody model and mutagenesis implicate arginine in transition-state stabilization.
    Roberts VA; Stewart J; Benkovic SJ; Getzoff ED
    J Mol Biol; 1994 Jan; 235(3):1098-116. PubMed ID: 8289310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-directed mutagenesis of proteolytic antibody light chain.
    Gao QS; Sun M; Rees AR; Paul S
    J Mol Biol; 1995 Nov; 253(5):658-64. PubMed ID: 7473741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new algorithm to convert a normal antibody into the corresponding catalytic antibody.
    Hifumi E; Taguchi H; Tsuda H; Minagawa T; Nonaka T; Uda T
    Sci Adv; 2020 Mar; 6(13):eaay6441. PubMed ID: 32232151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The immunological evolution of catalysis.
    Patten PA; Gray NS; Yang PL; Marks CB; Wedemayer GJ; Boniface JJ; Stevens RC; Schultz PG
    Science; 1996 Feb; 271(5252):1086-91. PubMed ID: 8599084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient method of preparing human catalytic antibody light chains and their biological characteristics.
    Hifumi E; Honjo E; Fujimoto N; Arakawa M; Nishizono A; Uda T
    FASEB J; 2012 Apr; 26(4):1607-15. PubMed ID: 22205784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleophilic proteolytic antibodies.
    Gololobov G; Tramontano A; Paul S
    Appl Biochem Biotechnol; 2000; 83(1-3):221-31; discussion 231-2, 297-313. PubMed ID: 10826962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.