These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 9113981)
1. Is strong hydrogen bonding in the transition state enough to account for the observed rate acceleration in a mutant of papain? Zheng YJ; Bruice TC Proc Natl Acad Sci U S A; 1997 Apr; 94(9):4285-8. PubMed ID: 9113981 [TBL] [Abstract][Full Text] [Related]
2. Peptide aldehydes and nitriles as transition state analog inhibitors of cysteine proteases. Dufour E; Storer AC; Ménard R Biochemistry; 1995 Jul; 34(28):9136-43. PubMed ID: 7619812 [TBL] [Abstract][Full Text] [Related]
3. Engineering nitrile hydratase activity into a cysteine protease by a single mutation. Dufour E; Storer AC; Ménard R Biochemistry; 1995 Dec; 34(50):16382-8. PubMed ID: 8845364 [TBL] [Abstract][Full Text] [Related]
4. Protein engineering of nitrile hydratase activity of papain: molecular dynamics study of a mutant and wild-type enzyme. Reddy SY; Kahn K; Zheng YJ; Bruice TC J Am Chem Soc; 2002 Nov; 124(44):12979-90. PubMed ID: 12405824 [TBL] [Abstract][Full Text] [Related]
5. Reversible covalent binding of peptide nitriles to papain. Hanzlik RP; Zygmunt J; Moon JB Biochim Biophys Acta; 1990 Jul; 1035(1):62-70. PubMed ID: 2383580 [TBL] [Abstract][Full Text] [Related]
6. Removal of an inter-domain hydrogen bond through site-directed mutagenesis: role of serine 176 in the mechanism of papain. Ménard R; Plouffe C; Khouri HE; Dupras R; Tessier DC; Vernet T; Thomas DY; Storer AC Protein Eng; 1991 Feb; 4(3):307-11. PubMed ID: 1907009 [TBL] [Abstract][Full Text] [Related]
7. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis. Topham CM; Salih E; Frazao C; Kowlessur D; Overington JP; Thomas M; Brocklehurst SM; Patel M; Thomas EW; Brocklehurst K Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):79-92. PubMed ID: 1741760 [TBL] [Abstract][Full Text] [Related]
8. Enzymatic hydrolysis of nitriles by an engineered nitrile hydratase (papain Gln19Glu) in aqueous-organic media. Versari A; Ménard R; Lortie R Biotechnol Bioeng; 2002 Jul; 79(1):9-14. PubMed ID: 17590926 [TBL] [Abstract][Full Text] [Related]
9. Molecular docking of cathepsin L inhibitors in the binding site of papain. Beavers MP; Myers MC; Shah PP; Purvis JE; Diamond SL; Cooperman BS; Huryn DM; Smith AB J Chem Inf Model; 2008 Jul; 48(7):1464-72. PubMed ID: 18598021 [TBL] [Abstract][Full Text] [Related]
10. Overlapping binding sites for trypsin and papain on a Kunitz-type proteinase inhibitor from Prosopis juliflora. Franco OL; Grossi de Sá MF; Sales MP; Mello LV; Oliveira AS; Rigden DJ Proteins; 2002 Nov; 49(3):335-41. PubMed ID: 12360523 [TBL] [Abstract][Full Text] [Related]
11. A comparison between the binding modes of a substrate and inhibitor to papain as observed in complex crystal structures. Yamamoto D; Ishida T; Inoue M Biochem Biophys Res Commun; 1990 Sep; 171(2):711-6. PubMed ID: 2403359 [TBL] [Abstract][Full Text] [Related]
12. Papain labelled with fluorescent thiol-specific reagents as a probe for characterization of interactions between cysteine proteinases and their protein inhibitors by competitive titrations. Lindahl P; Raub-Segall E; Olson ST; Björk I Biochem J; 1991 Jun; 276 ( Pt 2)(Pt 2):387-94. PubMed ID: 2049069 [TBL] [Abstract][Full Text] [Related]
13. Importance of hydrogen-bonding interactions involving the side chain of Asp158 in the catalytic mechanism of papain. Ménard R; Khouri HE; Plouffe C; Laflamme P; Dupras R; Vernet T; Tessier DC; Thomas DY; Storer AC Biochemistry; 1991 Jun; 30(22):5531-8. PubMed ID: 2036422 [TBL] [Abstract][Full Text] [Related]
14. Inactivation of cysteine proteases by peptidyl epoxides: characterization of the alkylation sites on the enzyme and the inactivator. Albeck A; Kliper S Biochem J; 2000 Feb; 346 Pt 1(Pt 1):71-6. PubMed ID: 10657241 [TBL] [Abstract][Full Text] [Related]
15. Role of the single cysteine residue, Cys 3, of human and bovine cystatin B (stefin B) in the inhibition of cysteine proteinases. Pol E; Björk I Protein Sci; 2001 Sep; 10(9):1729-38. PubMed ID: 11514663 [TBL] [Abstract][Full Text] [Related]
16. Kinetic, Mutational, and Structural Studies of the Venezuelan Equine Encephalitis Virus Nonstructural Protein 2 Cysteine Protease. Hu X; Compton JR; Leary DH; Olson MA; Lee MS; Cheung J; Ye W; Ferrer M; Southall N; Jadhav A; Morazzani EM; Glass PJ; Marugan J; Legler PM Biochemistry; 2016 May; 55(21):3007-19. PubMed ID: 27030368 [TBL] [Abstract][Full Text] [Related]
17. Recombinant pro-regions from papain and papaya proteinase IV-are selective high affinity inhibitors of the mature papaya enzymes. Taylor MA; Baker KC; Briggs GS; Connerton IF; Cummings NJ; Pratt KA; Revell DF; Freedman RB; Goodenough PW Protein Eng; 1995 Jan; 8(1):59-62. PubMed ID: 7770454 [TBL] [Abstract][Full Text] [Related]
18. Cysteine proteases such as papain are not inhibited by substrate analogue peptidyl boronic acids. Martichonok V; Jones JB Bioorg Med Chem; 1997 Apr; 5(4):679-84. PubMed ID: 9158866 [TBL] [Abstract][Full Text] [Related]
19. Revised definition of substrate binding sites of papain-like cysteine proteases. Turk D; Guncar G; Podobnik M; Turk B Biol Chem; 1998 Feb; 379(2):137-47. PubMed ID: 9524065 [TBL] [Abstract][Full Text] [Related]
20. Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain. Ménard R; Carrière J; Laflamme P; Plouffe C; Khouri HE; Vernet T; Tessier DC; Thomas DY; Storer AC Biochemistry; 1991 Sep; 30(37):8924-8. PubMed ID: 1892809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]